Do you want to publish a course? Click here

Disk origin of broad optical emission lines of the TDE candidate PTF09djl

163   0   0.0 ( 0 )
 Added by Fukun Liu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

An otherwise dormant supermassive black hole (SMBH) in a galactic nucleus flares up when it tidally disrupts a star passing by. Most of the tidal disruption events (TDEs) and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. In this Letter, we show that the double-peaked broad Halpha line of the TDE candidate PTF09djl can be well modelled with a relativistic elliptical accretion disk and the peculiar substructures with one peak at the line rest wavelength and the other redshifted to about 3.5x10^4 km/s are mainly due to the orbital motion of the emitting matter within the disk plane of large inclination 88degr and pericenter orientation nearly vertical to the observer. The accretion disk has an extreme eccentricity 0.966 and semimajor axis of 340 BH Schwarzschild radii. The viewing angle effects of large disk inclination lead to significant attenuation of He emission lines originally produced at large electron scattering optical depth and to the absence/weakness of He emission lines in the spectra of PTF09djl. Our results suggest that the diversities of line intensity ratios among the line species in optical TDEs are probably due to the differences of disk inclinations.



rate research

Read More

We re-analyzed SUZAKU data of the black hole candidate 4U 1630-472 being in the high/soft state. We show that the continuum X-ray spectrum of 4U 1630-472 with iron absorption lines can be satisfactorily modeled by the spectrum from an accretion disk atmosphere. Absorption lines of highly ionized iron originating in hot accretion disk atmosphere can be an alternative or complementary explanation to the wind model usually favored for these type of sources. We model continuum and line spectra using a single model. Absorption lines of highly ionized iron can origin in upper parts of the disk atmosphere which is intrinsically hot due to high disk temperature. Iron line profiles computed with natural, thermal and pressure broadenings match very well observations. We showed that the accretion disk atmosphere can effectively produce iron absorption lines observed in 4U 1630-472 spectrum. Absorption line arising in accretion disk atmosphere is the important part of the observed line profile, even if there are also other mechanisms responsible for the absorption features. Nevertheless, the wind theory can be an artifact of the fitting procedure, when the continuum and lines are fitted as separate model components.
86 - Khai Nguyen 2018
We present an improved semi-analytic model for calculation of the broad optical emission-line signatures from sub-parsec supermassive black hole binaries (SBHBs) in circumbinary disks. The second-generation model improves upon the treatment of radiative transfer by taking into account the effect of the radiation driven accretion disk wind on the properties of the emission-line profiles. Analysis of 42.5 million modeled emission-line profiles shows that correlations between the profile properties and SBHB parameters identified in the first-generation model are preserved, indicating that their diagnostic power is not diminished. The profile shapes are a more sensitive measure of the binary orbital separation and the degree of alignment of the black hole mini-disks, and are less sensitive to the SBHB mass ratio and orbital eccentricity. We also find that modeled profile shapes are more compatible with the observed sample of SBHB candidates than with our control sample of regular AGNs. Furthermore, if the observed sample of SBHBs is made up of genuine binaries, it must include compact systems with comparable masses, and misaligned mini-disks. We note that the model described in this paper can be used to interpret the observed emission-line profiles once a sample of confirmed SBHBs is available but cannot be used to prove that the observed SBHB candidates are true binaries.
92 - L. C. Popovic 2004
We present an investigation of the structure of the emission line region in a sample of 12 single-peaked Active Galactic Nuclei (AGNs). Using the high resolution H-beta and H-alpha line profiles observed with the Isaac Newton Telescope (La Palma) we study the substructure in the lines (such as shoulders or bumps) which can indicate a disk or disk-like emission in Broad Line Regions (BLRs). Applying Gaussian analysis we found that both kinds of emission regions, BLR and NLR, are complex. In this sample the narrow [OIII] lines are composites of two components; NLR1 which have random velocities from sim 200 to 500 km/s and systematic velocities toward the blue from 20 to 350 km/s, and NLR2 with smaller random velocities (sim 100-200 km/s) and a redshift corresponding to the cosmological one. The BLR also have complex structure and we apply a two-component model assuming that the line wings originate in a very broad line region (VBLR) and the line core in an intermediate line region (ILR). The VBLR is assumed to be an accretion disk and the ILR a spherical emission region. The model fits very well the H-alpha and H-beta line profiles of the AGNs.
432 - Jian-Min Wang 2017
Type 1 active galactic nuclei display broad emission lines, regarded as arising from photoionized gas moving in the gravitational potential of a supermassive black hole. The origin of this broad-line region gas is unresolved so far, however. Another component is the dusty torus beyond the broad-line region, likely an assembly of discrete clumps that can hide the region from some viewing angles and make them observationally appear as Type 2 objects. Here we report that these clumps moving within the dust sublimation radius, like the molecular cloud G2 discovered in the Galactic center, will be tidally disrupted by the hole, resulting in some gas becoming bound at smaller radii while other gas is ejected and returns to the torus. The clumps fulfill necessary conditions to be photoionized. Specific dynamical components of tidally disrupted clumps include spiral-in gas as inflow, circularized gas, and ejecta as outflow. We calculate various profiles of emission lines from these clouds, and find they generally agree with H$beta$ profiles of Palomar-Green quasars. We find that asymmetry, shape and shift of the profiles strongly depend on [O III], luminosity, which we interpret as a proxy of dusty torus angles. Tidally disrupted clumps from the torus may represent the source of the broad-line region gas.
Dust-obscured galaxies (DOGs) with extreme infrared luminosities may represent a key phase in the co-evolution of galaxies and supermassive black holes. We select 12 DOGs at $0.3lesssim zlesssim1.0$ with broad Mg II or H$beta$ emission lines and investigate their X-ray properties utilizing snapshot observations ($sim3~mathrm{ks}$ per source) with Chandra. By assuming that the broad lines are broadened due to virial motions of broad-line regions, we find that our sources generally have high Eddington ratios ($lambda_mathrm{Edd}$). Our sources generally have moderate intrinsic X-ray luminosities ($L_mathrm{X}lesssim10^{45}~mathrm{erg~s^{-1}}$), which are similar to those of other DOGs, but are more obscured. They also present moderate outflows and intense starbursts. Based on these findings, we conclude that high-$lambda_mathrm{Edd}$ DOGs are closer to the peaks of both host-galaxy and black-hole growth compared to other DOGs, and that AGN feedback has not swept away their reservoirs of gas. However, we cannot fully rule out the possibility that the broad lines are broadened by outflows, at least for some sources. We investigate the relations among $L_mathrm{X}$, AGN rest-frame $6~mathrm{mu m}$ monochromatic luminosity, and AGN bolometric luminosity, and find the relations are consistent with the expected ones.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا