Synthetic schlieren is an digital image processing optical method relying on the variation of optical index to visualize the flow of a transparent fluid. In this article, we present a step-by step, easy-to-implement and affordable experimental realization of this technique. The method is applied to air convection caused by a warm surface. We show that the velocity of rising convection plumes can be linked to the temperature of the warm surface and propose a simple physical argument to explain this dependence. Moreover, using this method, one can reveal the tenuous convection plumes rising from ounces hand, a phenomenon invisible to the naked eye. This spectacular result may help student realize the power of careful data acquisition combined with astute image processing techniques.