Do you want to publish a course? Click here

A Review of Exoplanetary Biosignatures

61   0   0.0 ( 0 )
 Added by John Lee Grenfell
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the field of exoplanetary biosignatures with a main focus upon atmospheric gas-phase species. Due to the paucity of data in Earth-like planetary atmospheres a common approach is to extrapolate knowledge from the Solar System and Early Earth to Earth-like exoplanets. We therefore review the main processes (e.g. atmospheric photochemistry and transport) affecting the most commonly-considered species (e.g. O2, O3, N2O, CH4 etc.) in the context of the modern Earth, Early Earth, the Solar System and Earth-like exoplanets. We consider thereby known abiotic sources for these species in the Solar System and beyond. We also discuss detectability issues related to atmospheric biosignature spectra such as band strength and uniqueness. Finally, we summarize current space agency roadmaps related to biosignature science in an exoplanet context.



rate research

Read More

In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earths biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a state-of-the-art overview of our current understanding of potential exoplanet biosignatures including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well-known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required for a given atmospheric signature. We focus particularly on advances made since the seminal review by Des Marais et al. (2002). The purpose of this work is not to propose new biosignatures strategies, a goal left to companion papers in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward.
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical Exo-Earth System models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes false positives where abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. 1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including external exoplanet parameters (e.g., mass and radius) to determine an exoplanets suitability for life. 2) Characterization of internal exoplanet parameters (e.g., climate) to evaluate habitability. 3) Assessment of potential biosignatures within the environmental context (components 1-2) and any corroborating evidence. 4) Exclusion of false positives. The resulting posterior Bayesian probabilities of lifes existence map to five confidence levels, ranging from very likely (90-100%) to very unlikely ($le$10%) inhabited.
Exoplanet science promises a continued rapid accumulation of new observations in the near future, energizing a drive to understand and interpret the forthcoming wealth of data to identify signs of life beyond our Solar System. The large statistics of exoplanet samples, combined with the ambiguity of our understanding of universal properties of life and its signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce a Bayesian framework for guiding future directions in life detection, which permits the possibility of generalizing our search strategy beyond biosignatures of known life. The Bayesian methodology provides a language to define quantitatively the conditional probabilities and confidence levels of future life detection and, importantly, may constrain the prior probability of life with or without positive detection. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from stellar and planetary context, the contingencies of evolutionary history and the universalities of physics and chemistry. We discuss how the Bayesian framework can guide our search strategies, including determining observational wavelengths or deciding between targeted searches or larger, lower resolution surveys. Our goal is to provide a quantitative framework not entrained to specific definitions of life or its signatures, which integrates the diverse disciplinary perspectives necessary to confidently detect alien life.
We investigate a new class of habitable planets composed of water-rich interiors with massive oceans underlying H2-rich atmospheres, referred to here as Hycean worlds. With densities between those of rocky super-Earths and more extended mini-Neptunes, Hycean planets can be optimal candidates in the search for exoplanetary habitability and may be abundant in the exoplanet population. We investigate the bulk properties (masses, radii, and temperatures), potential for habitability, and observable biosignatures of Hycean planets. We show that Hycean planets can be significantly larger compared to previous considerations for habitable planets, with radii as large as 2.6 Earth radii (2.3 Earth radii) for a mass of 10 Earth masses (5 Earth masses). We construct the Hycean habitable zone (HZ), considering stellar hosts from late M to sun-like stars, and find it to be significantly wider than the terrestrial-like HZ. While the inner boundary of the Hycean HZ corresponds to equilibrium temperatures as high as ~500 K for late M dwarfs, the outer boundary is unrestricted to arbitrarily large orbital separations. Our investigations include tidally locked `Dark Hycean worlds that permit habitable conditions only on their permanent nightsides and `Cold Hycean worlds that see negligible irradiation. Finally, we investigate the observability of possible biosignatures in Hycean atmospheres. We find that a number of trace terrestrial biomarkers which may be expected to be present in Hycean atmospheres would be readily detectable using modest observing time with the James Webb Space Telescope (JWST). We identify a sizable sample of nearby potential Hycean planets that can be ideal targets for such observations in search of exoplanetary biosignatures.
Terrestrial extrasolar planets around low-mass stars are prime targets when searching for atmospheric biosignatures with current and near-future telescopes. The habitable-zone Super-Earth LHS 1140 b could hold a hydrogen-dominated atmosphere and is an excellent candidate for detecting atmospheric features. In this study, we investigate how the instellation and planetary parameters influence the atmospheric climate, chemistry, and spectral appearance of LHS 1140 b. We study the detectability of selected molecules, in particular potential biosignatures, with the upcoming James Webb Space Telescope (JWST) and Extremely Large Telescope (ELT). In a first step we use the coupled climate-chemistry model, 1D-TERRA, to simulate a range of assumed atmospheric chemical compositions dominated by H$_2$ and CO$_2$. Further, we vary the concentrations of CH$_4$ by several orders of magnitude. In a second step we calculate transmission spectra of the simulated atmospheres and compare them to recent transit observations. Finally, we determine the observation time required to detect spectral bands with low resolution spectroscopy using JWST and the cross-correlation technique using ELT. In H$_2$-dominated and CH$_4$-rich atmospheres O$_2$ has strong chemical sinks, leading to low concentrations of O$_2$ and O$_3$. The potential biosignatures NH$_3$, PH$_3$, CH$_3$Cl and N$_2$O are less sensitive to the concentration of H$_2$, CO$_2$ and CH$_4$ in the atmosphere. In the simulated H$_2$-dominated atmosphere the detection of these gases might be feasible within 20 to 100 observation hours with ELT or JWST, when assuming weak extinction by hazes. If further observations of LHS 1140 b suggest a thin, clear, hydrogen-dominated atmosphere, the planet would be one of the best known targets to detect biosignature gases in the atmosphere of a habitable-zone rocky exoplanet with upcoming telescopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا