No Arabic abstract
We study theoretically the mutual information between reflected and transmitted speckle patterns produced by wave scattering from disordered media. The mutual information between the two speckle images recorded on an array of N detection points (pixels) takes the form of long-range intensity correlation loops, that we evaluate explicitly as a function of the disorder strength and the Thouless number g. Our analysis, supported by extensive numerical simulations, reveals a competing effect of cross-sample and surface spatial correlations. An optimal distance between pixels is proven to exist, that enhances the mutual information by a factor Ng compared to the single-pixel scenario.
We study theoretically the spatial correlations between the intensities measured at the input and output planes of a disordered scattering medium. We show that at large optical thicknesses, a long-range spatial correlation persists and takes negative values. For small optical thicknesses, short-range and long-range correlations coexist, with relative weights that depend on the optical thickness. These results may have direct implications for the control of wave transmission through complex media by wavefront shaping, thus finding applications in sensing, imaging and information transfer.
We experimentally observe the spatial intensity statistics of light transmitted through three-dimensional isotropic scattering media. The intensity distributions measured through layers consisting of zinc oxide nanoparticles differ significantly from the usual Rayleigh statistics associated with speckle, and instead are in agreement with the predictions of mesoscopic transport theory, taking into account the known material parameters of the samples. Consistent with the measured spatial intensity fluctuations, the total transmission fluctuates. The magnitude of the fluctuations in the total transmission is smaller than expected on the basis of quasi-one-dimensional (1D) transport theory, which indicates that quasi-1D theories cannot fully describe these open three-dimensional media.
Starting from the mutual information we present a method in order to find a hamiltonian for a fully connected neural network model with an arbitrary, finite number of neuron states, Q. For small initial correlations between the neurons and the patterns it leads to optimal retrieval performance. For binary neurons, Q=2, and biased patterns we recover the Hopfield model. For three-state neurons, Q=3, we find back the recently introduced Blume-Emery-Griffiths network hamiltonian. We derive its phase diagram and compare it with those of related three-state models. We find that the retrieval region is the largest.
The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here we demonstrate experimentally that the reflected and transmitted speckle patterns are correlated, even for opaque media with thickness much larger than the transport mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of mutual information between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.
The impact that information diffusion has on epidemic spreading has recently attracted much attention. As a disease begins to spread in the population, information about the disease is transmitted to others, which in turn has an effect on the spread of disease. In this paper, using empirical results of the propagation of H7N9 and information about the disease, we clearly show that the spreading dynamics of the two-types of processes influence each other. We build a mathematical model in which both types of spreading dynamics are described using the SIS process in order to illustrate the influence of information diffusion on epidemic spreading. Both the simulation results and the pairwise analysis reveal that information diffusion can increase the threshold of an epidemic outbreak, decrease the final fraction of infected individuals and significantly decrease the rate at which the epidemic propagates. Additionally, we find that the multi-outbreak phenomena of epidemic spreading, along with the impact of information diffusion, is consistent with the empirical results. These findings highlight the requirement to maintain social awareness of diseases even when the epidemics seem to be under control in order to prevent a subsequent outbreak. These results may shed light on the in-depth understanding of the interplay between the dynamics of epidemic spreading and information diffusion.