Do you want to publish a course? Click here

Calibrating Star Formation in WISE using Total Infrared Luminosity

63   0   0.0 ( 0 )
 Added by Michelle Cluver Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present accurate resolved $WISE$ photometry of galaxies in the combined SINGS and KINGFISH sample. The luminosities in the W3 12$mu$m and W4 23$mu$m bands are calibrated to star formation rates (SFRs) derived using the total infrared luminosity, avoiding UV/optical uncertainties due to dust extinction corrections. The W3 relation has a 1-$sigma$ scatter of 0.15 dex over nearly 5 orders of magnitude in SFR and 12$mu$m luminosity, and a range in host stellar mass from dwarf (10$^7$ M$_odot$) to $sim3times$M$_star$ (10$^{11.5}$ M$_odot$) galaxies. In the absence of deep silicate absorption features and powerful active galactic nuclei, we expect this to be a reliable SFR indicator chiefly due to the broad nature of the W3 band. By contrast the W4 SFR relation shows more scatter (1-$sigma =$ 0.18 dex). Both relations show reasonable agreement with radio continuum-derived SFRs and excellent accordance with so-called hybrid H$alpha + 24 mu$m and FUV$+$24$mu$m indicators. Moreover, the $WISE$ SFR relations appear to be insensitive to the metallicity range in the sample. We also compare our results with IRAS-selected luminous infrared galaxies, showing that the $WISE$ relations maintain concordance, but systematically deviate for the most extreme galaxies. Given the all-sky coverage of $WISE$ and the performance of the W3 band as a SFR indicator, the $L_{12mu rm m}$ SFR relation could be of great use to studies of nearby galaxies and forthcoming large area surveys at optical and radio wavelengths.



rate research

Read More

Using data from the Wide-field Infrared Survey Explorer (WISE) we show that the mid infrared (MIR) colors of low-luminosity AGNs (LLAGNs) are significanlty different from those of post-asymptotic giant branch stars (PAGBs). This is due to a difference in spectral energy distribution (SEDs), the LLAGNs showing a flat component due to an AGN. Consistent with this interpretation we show that in a MIR color-color diagram the LINERs and the Seyfert~2s follow a power law with specific colors that allow to distinguish them from each other, and from star forming galaxies, according to their present level of star formation. Based on this result we present a new diagnostic diagram in the MIR that confirms the classification obtained in the optical using standard diagnostic diagrams, clearly identifying LINERs and LLAGNs as genuine AGNs.
65 - J. Singal , J. George , A. Gerber 2016
We determine the 22$mu$m luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine the density evolution and local mid-infrared luminosity function. The latter displays a sharp flattening at local luminosities below $sim 10^{31}$ erg sec$^{-1}$ Hz$^{-1}$, which has been reported previously at 15 $mu$m for AGN classified as both type-1 and type-2. We calculate the integrated total emission from quasars at 22 $mu$m and find it to be a small fraction of both the cosmic infrared background light and the integrated emission from all sources at this wavelength.
The first luminous objects forming in the universe produce radiation backgrounds in the FUV and X-ray bands that affect the formation of Population III stars. Using a grid of cosmological hydrodynamics zoom-in simulations, we explore the impact of the Lyman-Warner (LW) and X-ray radiation backgrounds on the critical dark matter halo mass for Population III star formation and the total mass in stars per halo. We find that the LW radiation background lowers the H$_2$ fraction and delays the formation of the Population III stars. On the other hand, X-ray irradiation anticipates the redshift of collapse and reduces the critical halo mass, unless the X-ray background is too strong and gas heating shuts down gas collapse into the halos and prevents star formation. Therefore, an X-ray background can increase the number of dark matter halos forming Population III stars by about a factor of ten, but the total mass in stars forming in each halo is reduced. This is because X-ray radiation increases the molecular fraction and lowers the minimum temperature of the collapsing gas (or equivalently the mass of the quasi-hydrostatic core) and therefore slows down the accretion of the gas onto the central protostar.
We post-process galaxies in the IllustrisTNG simulations with SKIRT radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at $zgeq 4$. The rest-frame $K$- and $z$-band galaxy luminosity functions from TNG are overall consistent with observations, despite a $sim 0.4,mathrm{dex}$ underprediction at $z=4$ for $M_{rm z}lesssim -24$. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. We show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $500,{rm arcmin}^{2}$ at $z=6$ ($z=8$). As opposed to the consistency in the UV, optical and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshift are qualitatively consistent with observations, the peak dust temperature of $zgeq 6$ galaxies are overestimated by about $20,{rm K}$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.
We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break luminosity. We made extensive comparisons with various MIR LFs from several literatures. Our results for local galaxies from the NEP region are generally consistent with other works for different fields over wide luminosity ranges. The comparisons with the results from the NEP-Deep data as well as other LFs imply the luminosity evolution from higher redshifts towards the present epoch.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا