Do you want to publish a course? Click here

BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning

78   0   0.0 ( 0 )
 Added by Yuqing Zhu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

An ever increasing number of configuration parameters are provided to system users. But many users have used one configuration setting across different workloads, leaving untapped the performance potential of systems. A good configuration setting can greatly improve the performance of a deployed system under certain workloads. But with tens or hundreds of parameters, it becomes a highly costly task to decide which configuration setting leads to the best performance. While such task requires the strong expertise in both the system and the application, users commonly lack such expertise. To help users tap the performance potential of systems, we present BestConfig, a system for automatically finding a best configuration setting within a resource limit for a deployed system under a given application workload. BestConfig is designed with an extensible architecture to automate the configuration tuning for general systems. To tune system configurations within a resource limit, we propose the divide-and-diverge sampling method and the recursive bound-and-search algorithm. BestConfig can improve the throughput of Tomcat by 75%, that of Cassandra by 63%, that of MySQL by 430%, and reduce the running time of Hive join job by about 50% and that of Spark join job by about 80%, solely by configuration adjustment.



rate research

Read More

Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. GraphMat functions by taking vertex programs and mapping them to high performance sparse matrix operations in the backend. We get the productivity benefits of a vertex programming framework without sacrificing performance. GraphMat is in C++, and we have been able to write a diverse set of graph algorithms in this framework with the same effort compared to other vertex programming frameworks. GraphMat performs 1.2-7X faster than high performance frameworks such as GraphLab, CombBLAS and Galois. It achieves better multicore scalability (13-15X on 24 cores) than other frameworks and is 1.2X off native, hand-optimized code on a variety of different graph algorithms. Since GraphMat performance depends mainly on a few scalable and well-understood sparse matrix operations, GraphMatcan naturally benefit from the trend of increasing parallelism on future hardware.
The A64FX CPU powers the current number one supercomputer on the Top500 list. Although it is a traditional cache-based multicore processor, its peak performance and memory bandwidth rival accelerator devices. Generating efficient code for such a new architecture requires a good understanding of its performance features. Using these features, we construct the Execution-Cache-Memory (ECM) performance model for the A64FX processor in the FX700 supercomputer and validate it using streaming loops. We also identify architectural peculiarities and derive optimization hints. Applying the ECM model to sparse matrix-vector multiplication (SpMV), we motivate why the CRS matrix storage format is inappropriate and how the SELL-C-sigma format with suitable code optimizations can achieve bandwidth saturation for SpMV.
Over the last decade, research on automated parameter tuning, often referred to as automatic algorithm configuration (AAC), has made significant progress. Although the usefulness of such tools has been widely recognized in real world applications, the theoretical foundations of AAC are still very weak. This paper addresses this gap by studying the performance estimation problem in AAC. More specifically, this paper first proves the universal best performance estimator in a practical setting, and then establishes theoretical bounds on the estimation error, i.e., the difference between the training performance and the true performance for a parameter configuration, considering finite and infinite configuration spaces respectively. These findings were verified in extensive experiments conducted on four algorithm configuration scenarios involving different problem domains. Moreover, insights for enhancing existing AAC methods are also identified.
The A64FX CPU is arguably the most powerful Arm-based processor design to date. Although it is a traditional cache-based multicore processor, its peak performance and memory bandwidth rival accelerator devices. A good understanding of its performance features is of paramount importance for developers who wish to leverage its full potential. We present an architectural analysis of the A64FX used in the Fujitsu FX1000 supercomputer at a level of detail that allows for the construction of Execution-Cache-Memory (ECM) performance models for steady-state loops. In the process we identify architectural peculiarities that point to viable generic optimization strategies. After validating the model using simple streaming loops we apply the insight gained to sparse matrix-vector multiplication (SpMV) and the domain wall (DW) kernel from quantum chromodynamics (QCD). For SpMV we show why the CRS matrix storage format is not a good practical choice on this architecture and how the SELL-C-sigma format can achieve bandwidth saturation. For the DW kernel we provide a cache-reuse analysis and show how an appropriate choice of data layout for complex arrays can realize memory-bandwidth saturation in this case as well. A comparison with state-of-the-art high-end Intel Cascade Lake AP and Nvidia V100 systems puts the capabilities of the A64FX into perspective. We also explore the potential for power optimizations using the tuning knobs provided by the Fugaku system, achieving energy savings of about 31% for SpMV and 18% for DW.
Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, MLSys, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا