Magnetic and superconducting properties on S-type single-crystal CeCu$_2$Si$_2$ probed by $^{63}$Cu nuclear magnetic resonance and nuclear quadrupole resonance


Abstract in English

We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above $T_{rm c} sim$ 0.6 K. These behaviors were expected in $S$-type CeCu$_2$Si$_2$. The temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, $1/T_1$ in the SC state could be fitted with the two-gap $s_{pm}$-wave rather than the two-gap $s_{++}$-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below $T_{rm c}$, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from $1/T_1T$, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field $H_{c2}$, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.

Download