Do you want to publish a course? Click here

Universal partial sums of Taylor series as functions of the centre of expansion

208   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

V. Nestoridis conjectured that if $Omega$ is a simply connected subset of $mathbb{C}$ that does not contain $0$ and $S(Omega)$ is the set of all functions $fin mathcal{H}(Omega)$ with the property that the set $left{T_N(f)(z)coloneqqsum_{n=0}^Ndfrac{f^{(n)}(z)}{n!} (-z)^n : N = 0,1,2,dots right}$ is dense in $mathcal{H}(Omega)$, then $S(Omega)$ is a dense $G_delta$ set in $mathcal{H}(Omega)$. We answer the conjecture in the affirmative in the special case where $Omega$ is an open disc $D(z_0,r)$ that does not contain $0$.



rate research

Read More

We analyze the problem of global reconstruction of functions as accurately as possible, based on partial information in the form of a truncated power series at some point and additional analyticity properties. Within the class of functions analytic on a common Riemann surface Omega, with a common rate of growth and a common Maclaurin polynomial, we prove an optimality result on their reconstruction at arbitrary points in Omega, and find a procedure to attain it. This procedure uses the uniformization theorem; the optimal reconstruction errors depend only on the conformal distance to the origin. A priori knowledge of Omega is rigorously available for functions often encountered in analysis (such as solutions of meromomorphic ODEs and classes of PDEs). It is also available, rigorously or conjecturally based on numerical evidence, for perturbative expansions in quantum mechanics, statistical physics and quantum field theory, and in other areas in physics. For a subclass of such functions, we provide the optimal procedure explicitly. These include the Borel transforms of the linear special functions. We construct, in closed form, the uniformization map and optimal procedure for the Borel plane of nonlinear special functions, tronquee solutions of the Painleve equations P_I--P_V. For the latter, $Omega$ is the covering of CZ by curves with fixed origin, modulo homotopies. We obtain some of the uniformization maps as rapidly convergent limits of compositions of elementary maps. Given further information about the function, such as is available for the ubiquitous class of resurgent functions, significantly better approximations are possible and we construct them. In particular, any chosen one of their singularities can be eliminated by specific linear operators which we introduce, and the local structure at the chosen singularity can be obtained in fine detail.
In the present investigation, we introduce a new class k-US_{s}^{{eta}}({lambda},{mu},{gamma},t) of analytic functions in the open unit disc U with negative coefficients. The object of the present paper is to determine coefficient estimates, neighborhoods and partial sums for functions f(z) belonging to this class.
159 - Guangfu Cao , Ji Li , Minxing Shen 2019
We show that for an entire function $varphi$ belonging to the Fock space ${mathscr F}^2(mathbb{C}^n)$ on the complex Euclidean space $mathbb{C}^n$, the integral operator begin{eqnarray*} S_{varphi}F(z)=int_{mathbb{C}^n} F(w) e^{z cdotbar{w}} varphi(z- bar{w}),dlambda(w), zin mathbb{C}^n, end{eqnarray*} is bounded on ${mathscr F}^2(mathbb{C}^n)$ if and only if there exists a function $min L^{infty}(mathbb{R}^n)$ such that $$ varphi(z)=int_{mathbb{R}^n} m(x)e^{-2left(x-frac{i}{2} z right)cdot left(x-frac{i}{2} z right)} dx, zin mathbb{C}^n. $$ Here $dlambda(w)= pi^{-n}e^{-leftvert wrightvert^2}dw$ is the Gaussian measure on $mathbb C^n$. With this characterization we are able to obtain some fundamental results including the normaility, the algebraic property, spectrum and compactness of this operator $S_varphi$. Moreover, we obtain the reducing subspaces of $S_{varphi}$. In particular, in the case $n=1$, we give a complete solution to an open problem proposed by K. Zhu for the Fock space ${mathscr F}^2(mathbb{C})$ on the complex plane ${mathbb C}$ (Integr. Equ. Oper. Theory {bf 81} (2015), 451--454).
Inspired by the work of Bank on the hypertranscendence of $Gamma e^h$ where $Gamma$ is the Euler gamma function and $h$ is an entire function, we investigate when a meromorphic function $fe^g$ cannot satisfy any algebraic differential equation over certain field of meromorphic functions, where $f$ and $g$ are meromorphic and entire on the complex plane, respectively. Our results (Theorem 1 and 2) give partial solutions to Banks Conjecture (1977) on the hypertranscendence of $Gamma e^h$. We also give some sufficient conditions for hypertranscendence of meromorphic function of the form $f+g$, $fcdot g$ and $fcirc g$ in Theorem 3 and 4.
In this paper we characterize sums of CR functions from competing CR structures in two scenarios. In one scenario the structures are conjugate and we are adding to the theory of pluriharmonic boundary values. In the second scenario the structures are related by projective duality considerations. In both cases we provide explicit vector field-based characterizations for two-dimensional circular domains satisfying natural convexity conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا