Do you want to publish a course? Click here

From Classical to Quantum and Back: Hamiltonian Adaptive Resolution Path Integral, Ring Polymer, and Centroid Molecular Dynamics

166   0   0.0 ( 0 )
 Added by Raffaello Potestio
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Path integral-based simulation methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, such as ring polymer and centroid molecular dynamics, which allow the approximate calculation of both quantum statistical and quantum dynamical properties. To this end, we derive a new integration algorithm which also makes use of multiple time-stepping. The scheme is validated via adaptive classical--path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.



rate research

Read More

In computer simulations, quantum delocalization of atomic nuclei can be modeled making use of the Path Integral (PI) formulation of quantum statistical mechanics. This approach, however, comes with a large computational cost. By restricting the PI modeling to a small region of space, this cost can be significantly reduced. In the present work we derive a Hamiltonian formulation for a bottom-up, theoretically solid simulation protocol that allows molecules to change their resolution from quantum-mechanical to classical and vice versa on the fly, while freely diffusing across the system. This approach renders possible simulations of quantum systems at constant chemical potential. The validity of the proposed scheme is demonstrated by means of simulations of low temperature parahydrogen. Potential future applications include simulations of biomolecules, membranes, and interfaces.
Adaptive resolution schemes allow the simulation of a molecular fluid treating simultaneously different subregions of the system at different levels of resolution. In this work we present a new scheme formulated in terms of a global Hamiltonian. Within this approach equilibrium states corresponding to well defined statistical ensembles can be generated making use of all standard Molecular Dynamics or Monte Carlo methods. Models at different resolutions can thus be coupled, and thermodynamic equilibrium can be modulated keeping each region at desired pressure or density without disrupting the Hamiltonian framework.
89 - Timothy J. H. Hele 2015
We obtain thermostatted ring polymer molecular dynamics (TRPMD) from exact quantum dynamics via Matsubara dynamics, a recently-derived form of linearization which conserves the quantum Boltzmann distribution. Performing a contour integral in the complex quantum Boltzmann distribution of Matsubara dynamics, replacement of the imaginary Liouvillian which results with a Fokker-Planck term gives TRPMD. We thereby provide error terms between TRPMD and quantum dynamics and predict the systems in which they are likely to be small. Using a harmonic analysis we show that careful addition of friction causes the correct oscillation frequency of the higher ring-polymer normal modes in a harmonic well, which we illustrate with calculation of the position-squared autocorrelation function. However, no physical friction parameter will produce the correct fluctuation dynamics for a parabolic barrier. The results in this paper are consistent with previous numerical studies and advise the use of TRPMD for the computation of spectra.
Trapped Bosons exhibit fundamental physical phenomena and are potentially useful for quantum technologies. We present a method for simulating Bosons using path integral molecular dynamics. A main challenge for simulations is including all permutations due to exchange symmetry. We show that evaluation of the potential can be done recursively, avoiding explicit enumeration of permutations, and scales cubically with system size. The method is applied to Bosons in a 2D trap and agrees with essentially exact results. An analysis of the role of exchange with decreasing temperature is also presented.
The quantum many-body problem in condensed phases is often simplified using a quasiparticle description, such as effective mass theory for electron motion in a periodic solid. These approaches are often the basis for understanding many fundamental condensed phase processes, including the molecular mechanisms underlying solar energy harvesting and photocatalysis. Despite the importance of these effective particles, there is still a need for computational methods that can explore their behavior on chemically relevant length and time scales. This is especially true when the interactions between the particles and their environment are important. We introduce an approach for studying quasiparticles in condensed phases by combining effective mass theory with the path integral treatment of quantum particles. This framework incorporates the generally anisotropic electronic band structure of materials into path integral simulation schemes to enable modeling of quasiparticles in quantum confinement, for example. We demonstrate the utility of effective mass path integral simulations by modeling an exciton in solid potassium chloride and electron trapping by a sulfur vacancy in monolayer molybdenum disulfide.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا