Do you want to publish a course? Click here

Reconstructing the Cosmic Expansion History with a Monotonicity Prior

57   0   0.0 ( 0 )
 Added by Youhua Xu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmic expansion history, mapped by the Hubble parameter as a function of redshift, offers the most direct probe of the dark energy equation of state. One way to determine the Hubble parameter at different redshifts is essentially differentiating the cosmic age or distance with respect to redshift, which may incur large numerical errors with observational data. Taking the scenario that the Hubble parameter increases monotonically with redshift as a reasonable prior, we propose to enforce the monotonicity when reconstructing the Hubble parameter at a series of redshifts. Tests with mock type Ia supernova (SN Ia) data show that the monotonicity prior does not introduce significant biases and that errors on the Hubble parameter are greatly reduced compared to those determined with a flat prior at each redshift. Results from real SN Ia data are in good agreement with those based on ages of passively evolving galaxies. Although the Hubble parameter reconstructed from SN Ia distances does not necessarily provide more information than the distances themselves do, it offers a convenient way to compare with constraints from other methods. Moreover, the monotonicity prior is expected to be helpful to other probes that measure the Hubble parameter at multiple redshifts (e.g., baryon acoustic oscillations), and it may be generalized to other cosmological quantities that are reasonably monotonic with redshift.



rate research

Read More

Line-intensity mapping (LIM) of emission form star-forming galaxies can be used to measure the baryon acoustic oscillation (BAO) scale as far back as the epoch of reionization. This provides a standard cosmic ruler to constrain the expansion rate of the Universe at redshifts which cannot be directly probed otherwise. In light of growing tension between measurements of the current expansion rate using the local distance ladder and those inferred from the cosmic microwave background, extending the constraints on the expansion history to bridge between the late and early Universe is of paramount importance. Using a newly derived methodology to robustly extract cosmological information from LIM, which minimizes the inherent degeneracy with unknown astrophysics, we show that present and future experiments can gradually improve the measurement precision of the expansion rate history, ultimately reaching percent-level constraints on the BAO scale. Specifically, we provide detailed forecasts for the SPHEREx satellite, which will target the H$alpha$ and Lyman-$alpha$ lines, and for the ground-based COMAP instrument---as well as a future stage-3 experiment---that will target the CO rotational lines. Besides weighing in on the so-called Hubble tension, reliable LIM cosmic rulers can enable wide-ranging tests of dark matter, dark energy and modified gravity.
The measurement of the expansion history of the Universe from the redshift unknown gravitational wave (GW) sources (dark GW sources) detectable from the network of LIGO-Virgo-KAGRA (LVK) detectors depends on the synergy with the galaxy surveys having accurate redshift measurements over a broad redshift range, large sky coverage, and detectability of fainter galaxies. In this work, we explore the possible synergy of the LVK with the spectroscopic galaxy surveys such as DESI and SPHEREx to measure the cosmological parameters which are related to the cosmic expansion history and the GW bias parameters. We show that by using the three-dimensional spatial cross-correlation between the dark GW sources and the spectroscopic galaxy samples, we can measure the value of Hubble constant with about $2%$ and $1.5%$ precision from LVK+DESI and LVK+SPHEREx respectively from the five years of observation with $50%$ duty-cycle for the GW merger rates driven by the star formation history. Similarly, the dark energy equation of state can be measured with about $10%$ and $8%$ precision from LVK+DESI and LVK+SPHEREx respectively. We find that due to the larger sky coverage of SPHEREx than DESI, the performance in constraining the cosmological parameters is better from the former than the latter. By combining Euclid along with DESI, and SPHEREx a marginal gain in the measurability of the cosmological parameters is possible from the sources at high redshift ($zgeq 0.9$).
The cosmic microwave background (CMB) serves as a backlight to large-scale structure during the epoch of reionization, where Thomson scattering gives rise to temperature anisotropies on small angular scales from the kinetic Sunyaev Zeldovich (kSZ) effect. In this paper, we demonstrate that the technique of kSZ tomography (velocity reconstruction), based on cross correlations between CMB temperature and 21cm surveys, can significantly improve constraints on models of inhomogeneous reionization and provide information about large-scale modes that are poorly characterized by 21cm measurements themselves due to foreground contamination.
We test Einstein gravity using cosmological observations of both expansion and structure growth, including the latest data from supernovae (Union2.1), CMB (WMAP7), weak lensing (CFHTLS) and peculiar velocity of galaxies (WiggleZ). We fit modified gravity parameters of the generalized Poisson equations simultaneously with the effective equation of state for the background evolution, exploring the covariances and model dependence. The results show that general relativity is a good fit to the combined data. Using a Pad{e} approximant form for the gravity deviations accurately captures the time and scale dependence for theories like $f(R)$ and DGP gravity, and weights high and low redshift probes fairly. For current observations, cosmic growth and expansion can be fit simultaneously with little degradation in accuracy, while removing the possibility of bias from holding one aspect fixed.
We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the parameters of the model to determine which physical processes are dominant and which aspects of the model are robust. Generically, we find that SF is limited by the build-up of dark matter haloes at high redshift, reaches a broad maximum at intermediate redshift, then decreases as it is quenched by lower cooling rates in hotter and lower density gas, gas exhaustion, and self-regulated feedback from stars and black holes. The higher redshift SF is therefore mostly determined by the cosmological parameters and to a lesser extent by photo-heating from reionization. The location and height of the peak in the SF history, and the steepness of the decline towards the present, depend on the physics and implementation of stellar and black hole feedback. Mass loss from intermediate-mass stars and metal-line cooling both boost the SF rate at late times. Galaxies form stars in a self-regulated fashion at a rate controlled by the balance between, on the one hand, feedback from massive stars and black holes and, on the other hand, gas cooling and accretion. Paradoxically, the SF rate is highly insensitive to the assumed SF law. This can be understood in terms of self-regulation: if the SF efficiency is changed, then galaxies adjust their gas fractions so as to achieve the same rate of production of massive stars. Self-regulated feedback from accreting black holes is required to match the steep decline in the observed SF rate below redshift two, although more extreme feedback from SF, for example in the form of a top-heavy IMF at high gas pressures, can help.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا