Baseline Mixture Models for Social Networks


Abstract in English

Continuous mixtures of distributions are widely employed in the statistical literature as models for phenomena with highly divergent outcomes; in particular, many familiar heavy-tailed distributions arise naturally as mixtures of light-tailed distributions (e.g., Gaussians), and play an important role in applications as diverse as modeling of extreme values and robust inference. In the case of social networks, continuous mixtures of graph distributions can likewise be employed to model social processes with heterogeneous outcomes, or as robust priors for network inference. Here, we introduce some simple families of network models based on continuous mixtures of baseline distributions. While analytically and computationally tractable, these models allow more flexible modeling of cross-graph heterogeneity than is possible with conventional baseline (e.g., Bernoulli or $U|man$ distributions). We illustrate the utility of these baseline mixture models with application to problems of multiple-network ERGMs, network evolution, and efficient network inference. Our results underscore the potential ubiquity of network processes with nontrivial mixture behavior in natural settings, and raise some potentially disturbing questions regarding the adequacy of current network data collection practices.

Download