Do you want to publish a course? Click here

An Empirical Study of Contamination in Deep, Rapid, and Wide-Field Optical Follow-Up of Gravitational Wave Events

55   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an empirical study of contamination in deep, rapid, and wide-field optical follow-up searches of GW sources from aLIGO. We utilize dedicated observations during four nights of imaging with DECam. Our search covered $sim56$ deg$^2$, with two visits per night separated by $approx 3$~hours, in $i$- and $z$-band, followed by an additional set of $griz$ images three weeks later to serve as reference images for subtraction, and for the purpose of identifying galaxy and stellar counterparts for any transient sources. We achieve $5sigma$ point-source limiting magnitudes of $i approx 23.5$ and $z approx 22.4$ mag in the coadded single-epoch images. We conduct a search for transient objects that can mimic the $i-z$ color behavior of both red ($i-z > 0.5$~mag) and blue ($i-z < 0$~mag) kilonova emission, finding 11 and 10 contaminants, respectively. Independent of color, we identify 48 transients of interest. Additionally, we leverage the rapid cadence of our observations to search for sources with characteristic timescales of $approx1$ day and $approx3$ hours, finding no potential contaminants. We assess the efficiency of our pipeline and search methodology with injected point sources, finding that we are 90% (60%) efficient when searching for red (blue) kilonova-like sources to a limiting magnitude of $i lesssim 22.5$ mag. Applying these efficiencies, we derive sky rates for kilonova contaminants in the red and blue regimes of $mathcal{R}_{rm red} approx 0.16$ deg$^{-2}$ and $mathcal{R}_{rm blue} approx 0.80$ deg$^{-2}$. The total contamination rate, independent of color, is $mathcal{R}_{rm all} approx 1.79$ deg$^{-2}$. We compare our derived results to optical follow-up searches of the GW events GW150914 and GW151226 and comment on the outlook for GW follow-up searches as additional GW detectors (e.g., KAGRA, LIGO India) come online in the next decade.



rate research

Read More

We present an implementation of the Gehrels et al. (2016) galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ~300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely to detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory LIGO-Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).
Gravitational Wave (GW) events are physical processes that significantly perturbate space-time, e.g. compact binary coalescenses, causing the production of GWs. The detection of GWs by a worldwide network of advanced interferometers offer unique opportunities for multi-messenger searches and electromagnetic counterpart associations. While carrying extremely useful information, searches for associated electromagnetic emission are challenging due to large sky localisation uncertainties provided by the current GW observatories LIGO and Virgo. Here we present the methods and procedures used within the High Energy Stereoscopic System (H.E.S.S.) in searches for very-high-energy (VHE) gamma-ray emission associated to the emission of GWs from extreme events. To do so we create several algorithms dedicated to schedule GW follow-up observations by creating optimized pointing paterns. We describe algorithms using 2-dimensional GW localisation information and algorithms correlating the galaxy distribution in the local universe, by using galaxy catalogs, with the 3-dimensional GW localisation information and evaluate their performances. The H.E.S.S. automatic GW follow-up chain, described in this paper, is optimized to initiate GW follow-up observations within less than 1 minute after the alert reception. These developements allowed H.E.S.S. observations of 6 GW events out of the 67 non-retracted GW events detected during the first three observation runs of LIGO and Virgo reaching VHE $gamma$-ray coverages of up to 70% of the GW localisation.
Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR) to identify a forthcoming event tens of seconds before the companions collide and merge. Here we report on the design and testing of an early warning gravitational-wave detection pipeline. Early warning alerts can be produced for sources that are at low enough redshift so that a large enough SNR accumulates $sim 10 - 60,rm s$ before merger. We find that about 7% (respectively, 49%) of the total detectable BNS mergers will be detected $60, rm s$ ($10, rm s$) before the merger. About 2% of the total detectable BNS mergers will be detected before merger and localized to within $100, rm text{deg}^2$ (90% credible interval). Coordinated observing by several wide-field telescopes could capture the event seconds before or after the merger. LIGO-Virgo detectors at design sensitivity could facilitate observing at least one event at the onset of merger.
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a blind injection challenge. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
The first direct detection of gravitational waves (GW) by the ground-based interferometers is expected to occur within the next few years. These interferometers will detect the mergers of compact object binaries composed of neutron stars and/or black holes to a fiducial distance of ~200 Mpc and a localization region of ~100 sq. deg. To maximize the science gains from such GW detections it is essential to identify electromagnetic (EM) counterparts. The most promising such counterpart is optical/IR emission powered by the radioactive decay of r-process elements synthesized in the neutron-rich merger ejecta - a kilonova. Here we present detailed simulated observations that encompass a range of strategies for kilonova searches during GW follow-up. We assess both the detectability of kilonovae and our ability to distinguish them from a wide range of contaminating transients. We find that if pre-existing template images for the localization region are available, then nightly observations to a depth of i=24 mag and z=23 mag are required to achieve a 95% detection rate; observations that commence within 12 hours of trigger will also capture the kilonova peak and provide stronger constraints on the ejecta properties. We also find that kilonovae can be robustly separated from other types of transients utilizing cuts on color (i-z > 0 mag) and rise time (< 4 days). In the absence of a pre-existing template the observations must reach ~1 mag deeper to achieve the same kilonova detection rate, but robust rejection of contaminants can still be achieved. Motivated by the results of our simulations we discuss the expected performance of current and future wide-field telescopes in achieving these observational goals, and find that prior to LSST the Dark Energy Camera on the Blanco 4-m telescope and Hyper Suprime-Cam on the Subaru 8-m telescope offer the best kilonova discovery potential.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا