In this paper, we address the issue of enhancing coherence of a state under stochastic strictly incoherent operations. Based on the $l_1$ norm of coherence, we obtain the maximal value of coherence that can be achieved for a state undergoing a stochastic strictly incoherent operation and the maximal probability of obtaining the maximal coherence. Our findings indicate that a pure state can be transformed into a maximally coherent state under a stochastic strictly incoherent operation if and only if all the components of the pure state are nonzero while a mixed state can never be transformed into a maximally coherent state under a stochastic strictly incoherent operation.
We compute analytically the maximal rates of distillation of quantum coherence under strictly incoherent operations (SIO) and physically incoherent operations (PIO), showing that they coincide for all states, and providing a complete description of the phenomenon of bound coherence. In particular, we establish a simple, analytically computable necessary and sufficient criterion for the asymptotic distillability under SIO and PIO. We use this result to show that almost every quantum state is undistillable --- only pure states as well as states whose density matrix contains a rank-one submatrix allow for coherence distillation under SIO or PIO, while every other quantum state exhibits bound coherence. This demonstrates fundamental operational limitations of SIO and PIO in the resource theory of quantum coherence. We show that the fidelity of distillation of a single bit of coherence under SIO can be efficiently computed as a semidefinite program, and investigate the generalization of this result to provide an understanding of asymptotically achievable distillation fidelity.
Quantum states transformation under free operations plays a central role in the resource theory of coherence. In this paper, we investigate the transformation from a mixed coherent state into a pure one by using both incoherent operations and stochastic incoherent operations. We show that contrary to the strictly incoherent operations and the stochastic strictly incoherent operations, both the incoherent operations and the stochastic incoherent operations can increase the dimension of the maximal pure coherent subspace of a state. This means that the incoherent operations are generally stronger than the strictly incoherent operations when we want to transform a mixed coherent state into a pure coherent one. Our findings can also be interpreted as confirming the ability of incoherent operations to enhance the coherence of mixed states relative to certain coherence monotones under strictly incoherent operations.
Quantum coherence is one of the key features that fuels applications for which quantum mechanics exceeds the power of classical physics. This explains the considerable efforts that were undertaken to quantify coherence via quantum resource theories. An application of the resulting framework to concrete technological tasks is however largely missing. Here, we address this problem and connect the ability of an operation to detect or create coherence to the performance of interferometric experiments.
It is well known that the majorization condition is the necessary and sufficient condition for the deterministic transformations of both pure bipartite entangled states by local operations and coherent states under incoherent operations. In this paper, we present two explicit protocols for these transformations. We first present a permutation-based protocol which provides a method for the single-step transformation of $d$-dimensional coherent states. We also obtain generalized solutions of this protocol for some special cases of $d$-level systems. Then, we present an alternative protocol where we use $d$-level ($d$ $<$ $d$) subspace solutions of the permutation-based protocol to achieve the complete transformation as a sequence of coherent-state transformations. We show that these two protocols also provide solutions for deterministic transformations of pure bipartite entangled states.
We characterize the operational capabilities of quantum channels which can neither create nor detect quantum coherence vis-`a-vis efficiently manipulating coherence as a resource. We study the class of dephasing-covariant operations (DIO), unable to detect the coherence of any input state, as well as introduce an operationally-motivated class of channels $rho$-DIO which is tailored to a specific input state. We first show that pure-state transformations under DIO are completely governed by majorization, establishing necessary and sufficient conditions for such transformations and adding to the list of operational paradigms where majorization plays a central role. We then show that $rho$-DIO are strictly more powerful: although they cannot detect the coherence of the input state $rho$, the operations $rho$-DIO can distill more coherence than DIO. However, the advantage disappears in the task of coherence dilution as well as generally in the asymptotic limit, where both sets of operations achieve the same rates in all transformations.