Do you want to publish a course? Click here

Dynamic range maximization in excitable networks

156   0   0.0 ( 0 )
 Added by Renquan Zhang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the strategy to optimally maximize the dynamic range of excitable networks by removing the minimal number of links. A network of excitable elements can distinguish a broad range of stimulus intensities and has its dynamic range maximized at criticality. In this study, we formulate the activation propagation in excitable networks as a message passing process in which the critical state is reached when the largest eigenvalue of the weighted non-backtracking (WNB) matrix is exactly one. By considering the impact of single link removal on the largest eigenvalue, we develop an efficient algorithm that aims to identify the optimal set of links whose removal will drive the system to the critical state. Comparisons with other competing heuristics on both synthetic and real-world networks indicate that the proposed method can maximize the dynamic range by removing the smallest number of links, and at the same time maintain the largest size of the giant connected component.



rate research

Read More

127 - Sen Pei , Shaoting Tang , Shu Yan 2013
We investigate the collective dynamics of excitatory-inhibitory excitable networks in response to external stimuli. How to enhance dynamic range, which represents the ability of networks to encode external stimuli, is crucial to many applications. We regard the system as a two-layer network (E-Layer and I-Layer) and explore the criticality and dynamic range on diverse networks. Interestingly, we find that phase transition occurs when the dominant eigenvalue of E-layers weighted adjacency matrix is exactly one, which is only determined by the topology of E-Layer. Meanwhile, it is shown that dynamic range is maximized at critical state. Based on theoretical analysis, we propose an inhibitory factor for each excitatory node. We suggest that if nodes with high inhibitory factors are cut out from I-Layer, dynamic range could be further enhanced. However, because of the sparseness of networks and passive function of inhibitory nodes, the improvement is relatively small compared tooriginal dynamic range. Even so, this provides a strategy to enhance dynamic range.
Population bursts in a large ensemble of coupled elements result from the interplay between the local excitable properties of the nodes and the global network topology. Here collective excitability and self-sustained bursting oscillations are shown to spontaneously emerge in adaptive networks of globally coupled non-excitable units. The ingredients to observe collective excitability are the coexistence of states with different degree of synchronizaton joined to a global feedback acting, on a slow timescale, against the synchronization (desynchronization) of the oscillators. These regimes are illustrated for two paradigmatic classes of coupled rotators: namely, the Kuramoto model with and without inertia. For the bimodal Kuramoto model we analytically show that the macroscopic evolution originates from the existence of a critical manifold organizing the fast collective dynamics on a slow timescale. Our results provide evidence that adaptation can induce excitability by maintaining a network permanently out-of-equilibrium.
Networks of excitable elements are widely used to model real-world biological and social systems. The dynamic range of an excitable network quantifies the range of stimulus intensities that can be robustly distinguished by the network response, and is maximized at the critical state. In this study, we examine the impacts of backtracking activation on system criticality in excitable networks consisting of both excitatory and inhibitory units. We find that, for dynamics with refractory states that prohibit backtracking activation, the critical state occurs when the largest eigenvalue of the weighted non-backtracking (WNB) matrix for excitatory units, $lambda^E_{NB}$, is close to one, regardless of the strength of inhibition. In contrast, for dynamics without refractory state in which backtracking activation is allowed, the strength of inhibition affects the critical condition through suppression of backtracking activation. As inhibitory strength increases, backtracking activation is gradually suppressed. Accordingly, the system shifts continuously along a continuum between two extreme regimes -- from one where the criticality is determined by the largest eigenvalue of the weighted adjacency matrix for excitatory units, $lambda^E_W$, to the other where the critical state is reached when $lambda_{NB}^E$ is close to one. For systems in between, we find that $lambda^E_{NB}<1$ and $lambda^E_W>1$ at the critical state. These findings, confirmed by numerical simulations using both random and synthetic neural networks, indicate that backtracking activation impacts the criticality of excitable networks.
248 - Yu Qian , Xiaodong Huang , Gang Hu 2010
Small-world networks describe many important practical systems among which neural networks consisting of excitable nodes are the most typical ones. In this paper we study self-sustained oscillations of target waves in excitable small-world networks. A novel dominant phase-advanced driving (DPAD) method, which is generally applicable for analyzing all oscillatory complex networks consisting of nonoscillatory nodes, is proposed to reveal the self-organized structures supporting this type of oscillations. The DPAD method explicitly explores the oscillation sources and wave propagation paths of the systems, which are otherwise deeply hidden in the complicated patterns of randomly distributed target groups. Based on the understanding of the self-organized structure, the oscillatory patterns can be controlled with extremely high efficiency.
The stable operation of the electric power grid relies on a precisely synchronized state of all generators and machines. All machines rotate at exactly the same frequency with fixed phase differences, leading to steady power flows throughout the grid. Whether such a steady state exists for a given network is of eminent practical importance. The loss of a steady state typically leads to power outages up to a complete blackout. But also the existence of multiple steady states is undesirable, as it can lead to sudden transitions, circulating flows and eventually also to power outages. Steady states are typically calculated numerically, but this approach gives only limited insight into the existence and (non-)uniqueness of steady states. Analytic results are available only for special network configuration, in particular for grids with negligible Ohmic losses or radial networks without any loops. In this article, we introduce a method to systematically construct the solutions of the real power load-flow equations in the presence of Ohmic losses. We calculate the steady states explicitly for elementary networks demonstrating different mechanisms leading to multistability. Our results also apply to models of coupled oscillators which are widely used in theoretical physics and mathematical biology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا