Do you want to publish a course? Click here

Progressive Color Transfer with Dense Semantic Correspondences

77   0   0.0 ( 0 )
 Added by Jing Liao
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We propose a new algorithm for color transfer between images that have perceptually similar semantic structures. We aim to achieve a more accurate color transfer that leverages semantically-meaningful dense correspondence between images. To accomplish this, our algorithm uses neural representations for matching. Additionally, the color transfer should be spatially variant and globally coherent. Therefore, our algorithm optimizes a local linear model for color transfer satisfying both local and global constraints. Our proposed approach jointly optimizes matching and color transfer, adopting a coarse-to-fine strategy. The proposed method can be successfully extended from one-to-one to one-to-many color transfer. The latter further addresses the problem of mismatching elements of the input image. We validate our proposed method by testing it on a large variety of image content.



rate research

Read More

Model fine-tuning is a widely used transfer learning approach in person Re-identification (ReID) applications, which fine-tuning a pre-trained feature extraction model into the target scenario instead of training a model from scratch. It is challenging due to the significant variations inside the target scenario, e.g., different camera viewpoint, illumination changes, and occlusion. These variations result in a gap between the distribution of each mini-batch and the whole datasets distribution when using mini-batch training. In this paper, we study model fine-tuning from the perspective of the aggregation and utilization of the global information of the dataset when using mini-batch training. Specifically, we introduce a novel network structure called Batch-related Convolutional Cell (BConv-Cell), which progressively collects the global information of the dataset into a latent state and uses it to rectify the extracted feature. Based on BConv-Cells, we further proposed the Progressive Transfer Learning (PTL) method to facilitate the model fine-tuning process by jointly optimizing the BConv-Cells and the pre-trained ReID model. Empirical experiments show that our proposal can improve the performance of the ReID model greatly on MSMT17, Market-1501, CUHK03 and DukeMTMC-reID datasets. Moreover, we extend our proposal to the general image classification task. The experiments in several image classification benchmark datasets demonstrate that our proposal can significantly improve the performance of baseline models. The code has been released at url{https://github.com/ZJULearning/PTL}
149 - Hao Chen , Yali Wang , Guoyou Wang 2020
Recent development of object detection mainly depends on deep learning with large-scale benchmarks. However, collecting such fully-annotated data is often difficult or expensive for real-world applications, which restricts the power of deep neural networks in practice. Alternatively, humans can detect new objects with little annotation burden, since humans often use the prior knowledge to identify new objects with few elaborately-annotated examples, and subsequently generalize this capacity by exploiting objects from wild images. Inspired by this procedure of learning to detect, we propose a novel Progressive Object Transfer Detection (POTD) framework. Specifically, we make three main contributions in this paper. First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure. Via such human-like learning, one can boost a target detection task with few annotations. Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD). In LSTD, we distill the implicit object knowledge of source detector to enhance target detector with few annotations. It can effectively warm up WSTD later on. In WSTD, we design a recurrent object labelling mechanism for learning to annotate weakly-labeled images. More importantly, we exploit the reliable object supervision from LSTD, which can further enhance the robustness of target detector in the WSTD stage. Finally, we perform extensive experiments on a number of challenging detection benchmarks with different settings. The results demonstrate that, our POTD outperforms the recent state-of-the-art approaches.
In this paper, we address the problem of building dense correspondences between human images under arbitrary camera viewpoints and body poses. Prior art either assumes small motion between frames or relies on local descriptors, which cannot handle large motion or visually ambiguous body parts, e.g., left vs. right hand. In contrast, we propose a deep learning framework that maps each pixel to a feature space, where the feature distances reflect the geodesic distances among pixels as if they were projected onto the surface of a 3D human scan. To this end, we introduce novel loss functions to push features apart according to their geodesic distances on the surface. Without any semantic annotation, the proposed embeddings automatically learn to differentiate visually similar parts and align different subjects into an unified feature space. Extensive experiments show that the learned embeddings can produce accurate correspondences between images with remarkable generalization capabilities on both intra and inter subjects.
The key challenge in learning dense correspondences lies in the lack of ground-truth matches for real image pairs. While photometric consistency losses provide unsupervised alternatives, they struggle with large appearance changes, which are ubiquitous in geometric and semantic matching tasks. Moreover, methods relying on synthetic training pairs often suffer from poor generalisation to real data. We propose Warp Consistency, an unsupervised learning objective for dense correspondence regression. Our objective is effective even in settings with large appearance and view-point changes. Given a pair of real images, we first construct an image triplet by applying a randomly sampled warp to one of the original images. We derive and analyze all flow-consistency constraints arising between the triplet. From our observations and empirical results, we design a general unsupervised objective employing two of the derived constraints. We validate our warp consistency loss by training three recent dense correspondence networks for the geometric and semantic matching tasks. Our approach sets a new state-of-the-art on several challenging benchmarks, including MegaDepth, RobotCar and TSS. Code and models are at github.com/PruneTruong/DenseMatching.
In this paper, we propose an effective knowledge transfer framework to boost the weakly supervised object detection accuracy with the help of an external fully-annotated source dataset, whose categories may not overlap with the target domain. This setting is of great practical value due to the existence of many off-the-shelf detection datasets. To more effectively utilize the source dataset, we propose to iteratively transfer the knowledge from the source domain by a one-class universal detector and learn the target-domain detector. The box-level pseudo ground truths mined by the target-domain detector in each iteration effectively improve the one-class universal detector. Therefore, the knowledge in the source dataset is more thoroughly exploited and leveraged. Extensive experiments are conducted with Pascal VOC 2007 as the target weakly-annotated dataset and COCO/ImageNet as the source fully-annotated dataset. With the proposed solution, we achieved an mAP of $59.7%$ detection performance on the VOC test set and an mAP of $60.2%$ after retraining a fully supervised Faster RCNN with the mined pseudo ground truths. This is significantly better than any previously known results in related literature and sets a new state-of-the-art of weakly supervised object detection under the knowledge transfer setting. Code: url{https://github.com/mikuhatsune/wsod_transfer}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا