Do you want to publish a course? Click here

Tuning the diffusion of magnon in Y3Fe5O12 by light excitation

119   0   0.0 ( 0 )
 Added by Shuanhu Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deliberate control of magnon transportation will lead to an energy-efficient technology for information transmission and processing. Y3Fe5O12(YIG), exhibiting extremely large magnon diffusion length due to the low magnetic damping constant, has been intensively investigated for decades. While most of the previous works focused on the determination of magnon diffusion length by various techniques, herein we demonstrated how to tune magnon diffusion by light excitation. We found that the diffusion length of thermal magnons is strongly dependent on light wavelength when the magnon is generated by exposing YIG directly to laser beam. The diffusion length, determined by a nonlocal geometry at room temperature, is ~30 um for the magnons produced by visible light (400-650 nm), and ~136-156 um for the laser between 808 nm and 980 nm. The diffusion distance is much longer than the reported value. In addition to thermal gradient, we found that light illumination affected the electron configuration of the Fe3+ ion in YIG. Long wavelength laser triggers a high spin to low spin state transition of the Fe3+ ions in FeO6 octahedron. This in turn causes a substantial softening of the magnon thus a dramatic increase in diffusion distance. The present work paves the way towards an efficient tuning of magnon transport behavior which is crucially important for magnon spintronics.

rate research

Read More

Ion diffusion is important in a variety of applications, yet fundamental understanding of the diffusive process in solids is still missing, especially considering the interaction of lattice vibrations (phonons) and the mobile species. In this work, we introduce two formalisms that determine the individual contributions of normal modes of vibration (phonons) to the diffusion of ions through a solid, based on (i) Nudged Elastic Band (NEB) calculations and (ii) molecular dynamics (MD) simulations. The results for a model ion conductor of $rm{Ge}$-substituted $rm{Li_3PO_4}$ ($rm{Li_{3.042}Ge_{0.042}P_{0.958}O_4}$) revealed that more than 87% of the $rm{Li^+}$ ion diffusion in the lattice originated from a subset of less than 10% of the vibrational modes with frequencies between 8 and 20 THz. By deliberately exciting a small targeted subset of these contributing modes (less than 1%) to a higher temperature and still keeping the lattice at low temperature, we observed an increase in diffusivity by several orders of magnitude, consistent with what would be observed if the entire material (i.e., all modes) were excited to the same high temperature. This observation suggests that an entire material need not be heated to elevated temperatures to increase diffusivity, but instead only the modes that contribute to diffusion, or more generally a reaction/transition pathway, need to be excited to elevated temperatures. This new understanding identifies new avenues for increasing diffusivity by engineering the vibrations in a material, and/or increasing diffusivity by external stimuli/excitation of phonons (e.g., via photons or other interactions) without necessarily changing the compound chemistry.
Using the spin Seebeck effect (SSE), we study the propagation distance of thermal spin currents inside a magnetic insulator thin film in the short-range regime. We disambiguate spin currents driven by temperature and chemical potential gradients by comparing the SSE signal before and after adding a thermalization capping layer on the same device. We report that the measured spin decay behavior near the heat source is well accounted for by a diffusion model where the magnon diffusion length is in submicron range, textit{i.e.} two orders of magnitude smaller than previous estimates inferred from the long-range behavior. Our results highlight the caveat in applying a diffusive theory to describe thermal magnon transport, where a single decay length may not capture the behavior on all length scales.
Spin Hall magnetoresistance (SMR) and magnon excitation magnetoresistance (MMR) that all generate via the spin Hall effect and inverse spin Hall effect in a nonmagnetic material are always related to each other. However, the influence of magnon excitation for SMR is often overlooked due to the negligible MMR. Here, we investigate the SMR in Pt/Y3Fe5O12 (YIG) bilayers from 5 to 300K, in which the YIG are treated after Ar+-ion milling. The SMR in the treated device is smaller than in the non-treated. According to theoretical simulation, we attribute this phenomenon to the reduction of the interfacial spin-mixing conductance at the treated Pt/YIG interface induced by the magnon suppression. Our experimental results point out that the SMR and the MMR are inter-connected, and the former could be modulated via magnon excitation. Our findings provide a new approach for separating and clarifying the underlying mechanisms.
It is widely recognized that a physical system can only respond to a periodic driving significantly when the driving frequency matches the normal mode frequency of the system, which leads to resonance. Off-resonant phenomena are rarely considered because of the difficulty to realize strong coupling between physical systems and off-resonant waves. Here we examine the response of a magnetic system to squeezed light and surprisingly find that the magnons are maximally excited when the effective driving frequency is several orders of magnitude larger than the resonant frequency. The generated magnons are squeezed which brings the advantage of tunable squeezing through an external magnetic field. Furthermore, we demonstrate that such off-resonant quasi-particle excitation is universal in all the hybrid systems in which the coherent and parametric interaction of bosons exists and that it is purely a quantum effect, which is rooted in the quantum fluctuations of particles in the squeezed vacuum. Our findings may provide an unconventional route to study off-resonant phenomena and may further benefit the use of hybrid matter-light systems in continuous variable quantum information.
We investigated the specific electronic energy deposition by protons and He ions with keV energies in different transition metal nitrides of technological interest. Data were obtained from two different time-of-flight ion scattering setups and show excellent agreement. For protons interacting with light nitrides, i.e. TiN, VN and CrN, very similar stopping cross sections per atom were found, which coincide with literature data of N2 gas for primary energies <= 25 keV. In case of the chemically rather similar nitrides with metal constituents from the 5th and 6th period, i.e. ZrN and HfN, the electronic stopping cross sections were measured to exceed what has been observed for molecular N2 gas. For He ions, electronic energy loss in all nitrides was found to be significantly higher compared to the equivalent data of N2 gas. Additionally, deviations from velocity proportionality of the observed specific electronic energy loss are observed. A comparison with predictions from density functional theory for protons and He ions yields a high apparent efficiency of electronic excitations of the target for the latter projectile. These findings are considered to indicate the contributions of additional mechanisms besides electron hole pair excitations, such as electron capture and loss processes of the projectile or promotion of target electrons in atomic collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا