Differential cross sections at $t=t_{text{min}}$ and decay asymmetries for the $gamma prightarrowphi p$ reaction have been measured using linearly polarized photons in the range 1.5 to 2.9 GeV. These cross sections were used to determine the Pomeron strength factor. The cross sections and decay asymmetries are consistently described by the $t$-channel Pomeron and pseudoscalar exchange model in the $E_{gamma}$ region above 2.37 GeV. In the lower energy region, an excess over the model prediction is observed in the energy dependence of the differential cross sections at $t=t_{text{min}}$. This observation suggests that additional processes or interference effects between Pomeron exchange and other processes appear near the threshold region.
We report the measurement of differential cross sections for $omega$ and $eta$ photoproduction from protons at backward angles ($-1.0<cosTheta_{C.M}^{X}<-0.8$) using linearly polarized photons at $E_{gamma}=$$1.5-3.0$ GeV. Differential cross sections for $omega$ mesons are larger than the predicted $u$-channel contribution in the energy range $2.0leqsqrt{s}leq2.4$ GeV. The differential cross sections for $omega$ and $eta$ mesons become closer to the predicted $u$-channel contribution at $sqrt{s}>2.4$ GeV. A bump structure in the $sqrt{s}$ dependence of the differential cross sections for $eta$ mesons was observed at $sqrt{s}sim$2.35 GeV.
We report the measurement of the $gamma p rightarrow K^{+}Lambda$ and $gamma p rightarrow K^{+}Sigma^{0}$ reactions at SPring-8. The differential cross sections and photon-beam asymmetries are measured at forward $K^{+}$ production angles using linearly polarized tagged-photon beams in the range of $E_{gamma}=1.5$--3.0 GeV. With increasing photon energy, the cross sections for both $gamma p rightarrow K^{+}Lambda$ and $gamma p rightarrow K^{+}Sigma^{0}$ reactions decrease slowly. Distinct narrow structures in the production cross section have not been found at $E_{gamma}=1.5$--3.0 GeV. The forward peaking in the angular distributions of cross sections, a characteristic feature of $t$-channel exchange, is observed for the production of $Lambda$ in the whole observed energy range. A lack of similar feature for $Sigma^{0}$ production reflects a less dominant role of $t$-channel contribution in this channel. The photon-beam asymmetries remain positive for both reactions, suggesting the dominance of $K^{*}$ exchange in the $t$ channel. These asymmetries increase gradually with the photon energy, and have a maximum value of +0.6 for both reactions. Comparison with theoretical predictions based on the Regge trajectory in the $t$ channel and the contributions of nucleon resonances indicates the major role of $t$-channel contributions as well as non-negligible effects of nucleon resonances in accounting for the reaction mechanism of hyperon photoproduction in this photon energy regime.
Differential cross sections and photon beam asymmetries for $pi^0$ photoproduction have been measured at $E_gamma$ = 1.5--2.4 GeV and at the $pi^0$ scattering angles, --1 $<$ cos$Theta_{c.m.} <$ --0.6. The energy-dependent slope of differential cross sections for $u$-channel $pi^0$ production has been determined. An enhancement at backward angles is found above $E_gamma$ = 2.0 GeV. This is inferred to be due to the $u$-channel contribution and/or resonances. Photon beam asymmetries have been obtained for the first time at backward angles. A strong angular dependence has been found at $E_gamma >$ 2.0 GeV, which may be due to the unknown high-mass resonances.
Photoproduction of $phi$-meson on protons was studied by means of linearly polarized photons at forward angles in the low-energy region from threshold to $E_{gamma}$= 2.37 GeV. The differential cross sections at $t = -|t|_{min}$ do not increase smoothly as $E_{gamma}$ increases, but show a local maximum at around 2.0 GeV. The angular distributions demonstrate that $phi$-mesons are photo-produced predominantly by helicity-conserving processes, and the local maximum is not likely due to unnatural-parity processes.
Differential cross sections for $gamma p to K^+Lambda(1405)$ and $gamma p to K^+Sigma^0(1385)$ reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and the angular range of $0.8<cos(Theta)<1.0$ for the $K^+$ scattering angle in the center-of-mass system. This data is the first measurement of the $Lambda(1405)$ photoproduction cross section. The lineshapes of LamS measured in $Sigma^+pi^-$ and $Sigma^-pi^+$ decay modes were different with each other, indicating a strong interference of the isospin 0 and 1 terms of the $Sigmapi$ scattering amplitudes. The ratios of LamS production to SigS production were measured in two photon energy ranges: near the production threshold ($1.5<E_gamma<2.0$ GeV) and far from it ($2.0 <E_gamma<2.4$ GeV). The observed ratio decreased in the higher photon energy region, which may suggest different production mechanisms and internal structures for these hyperon resonances.