Do you want to publish a course? Click here

Galaxy Cluster Mass Reconstruction Project: III. The impact of dynamical substructure on cluster mass estimates

80   0   0.0 ( 0 )
 Added by Lyndsay Old
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses becomes ever more crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an unrelaxed state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously with commonly-used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by $sim10%$ at $10^{14}$ and $geq20%$ for $leq10^{13.5}$. The use of cluster samples with different levels of substructure can, therefore, bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.



rate research

Read More

This paper is the first in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilise the positions, velocities and colours of galaxies. Our primary aim is to test the performance of these cluster mass estimation techniques on a diverse set of models that will increase in complexity. We begin by providing participating methods with data from a simple model that delivers idealised clusters, enabling us to quantify the underlying scatter intrinsic to these mass estimation techniques. The mock catalogue is based on a Halo Occupation Distribution (HOD) model that assumes spherical Navarro, Frenk and White (NFW) haloes truncated at R_200, with no substructure nor colour segregation, and with isotropic, isothermal Maxwellian velocities. We find that, above 10^14 M_solar, recovered cluster masses are correlated with the true underlying cluster mass with an intrinsic scatter of typically a factor of two. Below 10^14 M_solar, the scatter rises as the number of member galaxies drops and rapidly approaches an order of magnitude. We find that richness-based methods deliver the lowest scatter, but it is not clear whether such accuracy may simply be the result of using an over-simplistic model to populate the galaxies in their haloes. Even when given the true cluster membership, large scatter is observed for the majority non-richness-based approaches, suggesting that mass reconstruction with a low number of dynamical tracers is inherently problematic.
Galaxy cluster outskirts mark the transition region from the mildly non-linear cosmic web to the highly non-linear, virialised, cluster interior. It is in this transition region that the intra-cluster medium (ICM) begins to influence the properties of accreting galaxies and groups, as ram pressure impacts a galaxys cold gas content and subsequent star formation rate. Conversely, the thermodynamical properties of the ICM in this transition region should also feel the influence of accreting substructure (i.e. galaxies and groups), whose passage can drive shocks. In this paper, we use a suite of cosmological hydrodynamical zoom simulations of a single galaxy cluster, drawn from the nIFTy comparison project, to study how the dynamics of substructure accreted from the cosmic web influences the thermodynamical properties of the ICM in the clusters outskirts. We demonstrate how features evident in radial profiles of the ICM (e.g. gas density and temperature) can be linked to strong shocks, transient and short-lived in nature, driven by the passage of substructure. The range of astrophysical codes and galaxy formation models in our comparison are broadly consistent in their predictions (e.g. agreeing when and where shocks occur, but differing in how strong shocks will be); this is as we would expect of a process driven by large-scale gravitational dynamics and strong, inefficiently radiating, shocks. This suggests that mapping such shock structures in the ICM in a clusters outskirts (via e.g. radio synchrotron emission) could provide a complementary measure of its recent merger and accretion history.
The total mass of a galaxy cluster is one of its most fundamental properties. Together with the redshift, the mass links observation and theory, allowing us to use the cluster population to test models of structure formation and to constrain cosmological parameters. Building on the rich heritage from X-ray surveys, new results from Sunyaev-Zeldovich and optical surveys have stimulated a resurgence of interest in cluster cosmology. These studies have generally found fewer clusters than predicted by the baseline Planck LCDM model, prompting a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale. Here we review recent progress on this front. Our theoretical understanding continues to advance, with numerical simulations being the cornerstone of this effort. On the observational side, new, sophisticated techniques are being deployed in individual mass measurements and to account for selection biases in cluster surveys. We summarise the state of the art in cluster mass estimation methods and the systematic uncertainties and biases inherent in each approach, which are now well identified and understood, and explore how current uncertainties propagate into the cosmological parameter analysis. We discuss the prospects for improvements to the measurement of the mass scale using upcoming multi-wavelength data, and the future use of the cluster population as a cosmological probe.
118 - L. Old , R. Wojtak , G. A. Mamon 2015
This article is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilise the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the RMS errors in log M200c delivered by the different methods (0.18 to 1.08 dex, i.e., a factor of ~1.5 to 12), with abundance matching and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or over-estimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness or abundance matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high mass clusters. We see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. We do not observe significantly higher scatter for either mock galaxy catalogues. Our results have implications for cosmological analyses that utilise the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.
The halo mass function (HMF) is a critical element in cosmological analyses of galaxy cluster catalogs. We quantify the impact of uncertainties in HMF parameters on cosmological constraints from cluster catalogs similar to those from Planck, those expected from the Euclid, Roman and Rubin surveys, and from a hypothetical larger future survey. We analyse simulated catalogs in each case, gradually loosening priors on HMF parameters to evaluate the degradation in cosmological constraints. While current uncertainties on HMF parameters do not substantially impact Planck-like surveys, we find that they can significantly degrade the cosmological constraints for a Euclid-like survey. Consequently, the current precision on the HMF will not be sufficient for Euclid (or Roman or Rubin) and possible larger surveys. Future experiments will have to properly account for uncertainties in HMF parameters, and it will be necessary to improve precision of HMF fits to avoid weakening constraints on cosmological parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا