Do you want to publish a course? Click here

A topological source of quantum light

322   0   0.0 ( 0 )
 Added by Sunil Mittal
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum light sources are characterized by their distinctive statistical distribution of photons. For example, single photons and correlated photon pairs exhibit antibunching and reduced variance in the number distribution that is impossible with classical light. Most common realizations of quantum light sources have relied on spontaneous parametric processes such as down-conversion (SPDC) and four-wave mixing (SFWM). These processes are mediated by vacuum fluctuations of the electromagnetic field. Therefore, by manipulating the electromagnetic mode structure, for example, using nanophotonic systems, one can engineer the spectrum of generated photons. However, such manipulations are susceptible to fabrication disorders which are ubiquitous in nanophotonic systems and lead to device-to-device variations in the spectrum of generated photons. Here, we demonstrate topologically robust mode engineering of the electromagnetic vacuum fluctuations and implement a nanophotonic quantum light source where the spectrum of generated photons is robust against fabrication disorders. Specifically, we use the topological edge states to achieve an enhanced and robust generation of correlated photon pairs using SFWM and show that they outperform their topologically-trivial counterparts. We demonstrate the non-classical nature of our source using conditional antibunching of photons which confirms that we have realized a robust source of heralded single photons. Such topological effects, which are unique to bosonic systems, could pave the way for the development of robust quantum photonic devices.



rate research

Read More

Sources of quantum light, in particular correlated photon pairs that are indistinguishable in all degrees of freedom, are the fundamental resource that enables continuous-variable quantum computation and paradigms such as Gaussian boson sampling. Nanophotonic systems offer a scalable platform for implementing sources of indistinguishable correlated photon pairs. However, such sources have so far relied on the use of a single component, such as a single waveguide or a ring resonator, which offers limited ability to tune the spectral and temporal correlations between photons. Here, we demonstrate the use of a topological photonic system comprising a two-dimensional array of ring resonators to generate indistinguishable photon pairs with dynamically tunable spectral and temporal correlations. Specifically, we realize dual-pump spontaneous four-wave mixing in this array of silicon ring resonators that exhibits topological edge states. We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations, and therefore, quantum interference between photons by simply tuning the two pump frequencies in the edge band. Furthermore, we demonstrate energy-time entanglement between generated photons. We also show that our topological source is inherently protected against fabrication disorders. Our results pave the way for scalable and tunable sources of squeezed light that are indispensable for quantum information processing using continuous variables.
Topological photonic structures exhibit chiral edge states that are robust to disorder and sharp bends. When coupled to quantum emitters, these edge states generate directional light emission that enables unprecedented control of interactions between light and matter in a nanophotonic device. While directional light emission in one-dimensional topological, as well as conventional, waveguides has been previously demonstrated, the extension of these concepts to resonator structures that enhance light-matter coupling remains challenging. Here we demonstrate chiral lightmatter interactions in a topological resonator. We employ valley-Hall topological edge states to realize a helical resonator at the interface of two topologically distinct regions. Such a helical resonator has two counter-propagating modes with opposite polarizations. We show chiral coupling of the resonator to a quantum emitter resulting in a Purcell enhancement of 3.4 due to resonant coupling. Such chiral resonators could enable designing complex nanophotonic circuits for quantum information processing, and studying novel quantum many-body dynamics.
Distinguishing between strings of data or waveforms is at the core of multiple applications in information technologies. In a quantum language the task is to design protocols to differentiate quantum states. Quantum-based technologies promises to go beyond the capabilities offered by technologies based on classical principles. However the implementation of the logical gates that are the core of these systems is challenging since they should overcome quantum decoherence, low probability of success and are prone to errors. One unexpected contribution of considering ideas in the quantum world is to inspire similar solutions in the classical world (quantum-inspired technologies), protocols that aim at mimicking particular features of quantum algorithms. This is based on features of quantum physics also shared by waves in the classical world, such it is the case of interference or entanglement between degrees of freedom of a single particle. Here we demonstrate in a proof-of-concept experiment a new type of quantum-inspired protocol based on the idea of quantum fingerprinting (Phys. Rev. Lett. 87, 167902, 2001). Information is encoded on optical beams with orbital angular momentum (OAM). These beams allow to implement a crucial element of our system, a new type of Fredkin gate or polarization-controlled SWAP operation that exchange data between OAM beams. The protocols can evaluate the similarity between pairs of waveforms and strings of bits and quarts without unveiling the information content of the data.
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena. Demonstrations of such processes have, however, been limited to probabilistic sources, for instance, spontaneous parametric down-conversion or faint lasers, which cannot be triggered deterministically. Here, we demonstrate QRNG with a quantum emitter in hexagonal boron nitride; an emerging solid-state quantum source that can generate single photons on demand and operates at room temperature. We achieve true random number generation through the measurement of single photons exiting one of four integrated photonic waveguides, and subsequently, verify the randomness of the sequences in accordance with the National Institute of Standards and Technology benchmark suite. Our results open a new avenue to the fabrication of on-chip deterministic random number generators and other solid-state-based quantum-optical devices.
Vacuum ultraviolet (VUV) light at 118 nm has been shown to be a powerful tool to ionize molecules for various gas-phase chemical studies. A convenient table top source of 118 nm light can be produced by frequency tripling 355 nm light from a Nd:YAG laser in xenon gas. This process has a low efficiency, typically producing only nJ/pulse of VUV light. Simple models of the tripling process predict the power of 118 nm light produced should increase quadratically with increasing xenon pressure. However, experimental 118 nm production has been observed to reach a maximum and then decrease to zero with increasing xenon pressure. Here, we describe the basic theory and experimental setup for producing 118 nm light and a new proposed model for the mechanism limiting the production based on pressure broadened absorption.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا