Do you want to publish a course? Click here

Emergence of long-ranged stress correlations at the liquid to glass transition

56   0   0.0 ( 0 )
 Added by Matthias Fuchs
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A theory for the non-local shear stress correlations in supercooled liquids is derived from first principles. It captures the crossover from viscous to elastic dynamics at an idealized liquid to glass transition and explains the emergence of long-ranged stress correlations in glass, as expected from classical continuum elasticity. The long-ranged stress correlations can be traced to the coupling of shear stress to transverse momentum, which is ignored in the classic Maxwell model. To rescue this widely used model, we suggest a generalization in terms of a single relaxation time $tau$ for the fast degrees of freedom only. This generalized Maxwell model implies a divergent correlation length $xiproptotau$ as well as dynamic critical scaling and correctly accounts for the far-field stress correlations. It can be rephrased in terms of generalized hydrodynamic equations, which naturally couple stress and momentum and furthermore allow to connect to fluidity and elasto-plastic models.



rate research

Read More

Model systems of self-propelled particles reproduce many phenomena observed in laboratory active matter systems that defy our thermal equilibrium-based intuition. In particular, in stationary states of self-propelled systems, it is recognized that velocities of different particles exhibit non-trivial equal-time correlations. Such correlations are absent in equivalent equilibrium systems. Recently, researchers found that the range of the velocity correlations increases with increasing persistence time of the self-propulsion and can extend over many particle diameters. Here we review the initial studies of long-ranged velocity correlations in solid-like systems of self-propelled particles. Then, we demonstrate that the long-ranged velocity correlations are also present in dense fluid-like systems. We show that the range of velocity correlations in dense systems of self-propelled particles is determined by the combination of the self-propulsion and the virial bulk modulus that originates from repulsive interparticle interactions.
The ac nonlinear dielectric response $chi_3(omega,T)$ of glycerol was measured close to its glass transition temperature $T_g$ to investigate the prediction that supercooled liquids respond in an increasingly non-linear way as the dynamics slows down (as spin-glasses do). We find that $chi_3(omega,T)$ indeed displays several non trivial features. It is peaked as a function of the frequency $omega$ and obeys scaling as a function of $omega tau(T)$, with $tau(T)$ the relaxation time of the liquid. The height of the peak, proportional to the number of dynamically correlated molecules $N_{corr}(T)$, increases as the system becomes glassy, and $chi_3$ decays as a power-law of $omega$ over several decades beyond the peak. These findings confirm the collective nature of the glassy dynamics and provide the first direct estimate of the $T$ dependence of $N_{corr}$.
86 - U. Buchenau 2021
The glass transition in hydrogen-bonded glass formers differs from the glass transition in other glass formers. The Eshelby rearrangements of the highly viscous flow are superimposed by strongly asymmetric hydrogen bond rupture processes, responsible for the excess wing. Their influence on the shear relaxation spectrum is strong in glycerol and close to zero in PPE, reflecting the strength of the hydrogen bond contribution to the high frequency shear modulus. An appropriate modification of a recent theory of the highly viscous flow enables a quantitative common description of the relaxation spectra in shear, linear and non-linear dielectrics, and heat capacity.
Work fluctuations and work probability distributions are fundamentally different in systems with short- ranged versus long-ranged correlations. Specifically, in systems with long-ranged correlations the work distribution is extraordinarily broad compared to systems with shortranged correlations. This difference profoundly affects the possible applicability of fluctuation theorems like the Jarzynski fluctuation theorem. The Heisenberg ferromagnet , well below its Curie temperature, is a system with long-ranged correlations in very low magnetic fields due to the presence of Goldstone modes. As the magnetic field is increased the correlations gradually become short-ranged. Hence, such a ferromagnet is an ideal system for elucidating the changes of the work probability distribution as one goes from a domain with long-ranged correlations to a domain with short-ranged correlations by tuning the magnetic field. A quantitative analysis of this crossover behaviour of the work probability distribution and the associated fluctuations is presented.
We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable fluidized state, which relaxes back to a metastable solid state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches as well as long-range correlations (e.g., large dynamic heterogeneity) developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا