Do you want to publish a course? Click here

Total Roto-Translational Variation

123   0   0.0 ( 0 )
 Added by Antonin Chambolle
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider curvature depending variational models for image regularization, such as Eulers elastica. These models are known to provide strong priors for the continuity of edges and hence have important applications in shape-and image processing. We consider a lifted convex representation of these models in the roto-translation space: In this space, curvature depending variational energies are represented by means of a convex functional defined on divergence free vector fields. The line energies are then easily extended to any scalar function. It yields a natural generalization of the total variation to the roto-translation space. As our main result, we show that the proposed convex representation is tight for characteristic functions of smooth shapes. We also discuss cases where this representation fails. For numerical solution, we propose a staggered grid discretization based on an averaged Raviart-Thomas finite elements approximation. This discretization is consistent, up to minor details, with the underlying continuous model. The resulting non-smooth convex optimization problem is solved using a first-order primal-dual algorithm. We illustrate the results of our numerical algorithm on various problems from shape-and image processing.



rate research

Read More

We consider X-ray coherent scatter imaging, where the goal is to reconstruct momentum transfer profiles (spectral distributions) at each spatial location from multiplexed measurements of scatter. Each material is characterized by a unique momentum transfer profile (MTP) which can be used to discriminate between different materials. We propose an iterative image reconstruction algorithm based on a Poisson noise model that can account for photon-limited measurements as well as various second order statistics of the data. To improve image quality, previous approaches use edge-preserving regularizers to promote piecewise constancy of the image in the spatial domain while treating each spectral bin separately. Instead, we propose spectrally grouped regularization that promotes piecewise constant images along the spatial directions but also ensures that the MTPs of neighboring spatial bins are similar, if they contain the same material. We demonstrate that this group regularization results in improvement of both spectral and spatial image quality. We pursue an optimization transfer approach where convex decompositions are used to lift the problem such that all hyper-voxels can be updated in parallel and in closed-form. The group penalty introduces a challenge since it is not directly amendable to these decompositions. We use the alternating directions method of multipliers (ADMM) to replace the original problem with an equivalent sequence of sub-problems that are amendable to convex decompositions, leading to a highly parallel algorithm. We demonstrate the performance on real data.
296 - Jongho Park 2019
In this paper, we propose an overlapping additive Schwarz method for total variation minimization based on a dual formulation. The $O(1/n)$-energy convergence of the proposed method is proven, where $n$ is the number of iterations. In addition, we introduce an interesting convergence property called pseudo-linear convergence of the proposed method; the energy of the proposed method decreases as fast as linearly convergent algorithms until it reaches a particular value. It is shown that such the particular value depends on the overlapping width $delta$, and the proposed method becomes as efficient as linearly convergent algorithms if $delta$ is large. As the latest domain decomposition methods for total variation minimization are sublinearly convergent, the proposed method outperforms them in the sense of the energy decay. Numerical experiments which support our theoretical results are provided.
This work considers the use of Total variation (TV) minimization in the recovery of a given gradient sparse vector from Gaussian linear measurements. It has been shown in recent studies that there exist a sharp phase transition behavior in TV minimization in asymptotic regimes. The phase transition curve specifies the boundary of success and failure of TV minimization for large number of measurements. It is a challenging task to obtain a theoretical bound that reflects this curve. In this work, we present a novel upper-bound that suitably approximates this curve and is asymptotically sharp. Numerical results show that our bound is closer to the empirical TV phase transition curve than the previously known bound obtained by Kabanava.
124 - Guodong Xu , Yu Xia , Hui Ji 2018
Data clustering is a fundamental problem with a wide range of applications. Standard methods, eg the $k$-means method, usually require solving a non-convex optimization problem. Recently, total variation based convex relaxation to the $k$-means model has emerged as an attractive alternative for data clustering. However, the existing results on its exact clustering property, ie, the condition imposed on data so that the method can provably give correct identification of all cluster memberships, is only applicable to very specific data and is also much more restrictive than that of some other methods. This paper aims at the revisit of total variation based convex clustering, by proposing a weighted sum-of-$ell_1$-norm relating convex model. Its exact clustering property established in this paper, in both deterministic and probabilistic context, is applicable to general data and is much sharper than the existing results. These results provided good insights to advance the research on convex clustering. Moreover, the experiments also demonstrated that the proposed convex model has better empirical performance when be compared to standard clustering methods, and thus it can see its potential in practice.
123 - Zheng Liu , YanLei Li , Weina Wang 2021
Total Generalized Variation (TGV) has recently been proven certainly successful in image processing for preserving sharp features as well as smooth transition variations. However, none of the existing works aims at numerically calculating TGV over triangular meshes. In this paper, we develop a novel numerical framework to discretize the second-order TGV over triangular meshes. Further, we propose a TGV-based variational model to restore the face normal field for mesh denoising. The TGV regularization in the proposed model is represented by a combination of a first- and second-order term, which can be automatically balanced. This TGV regularization is able to locate sharp features and preserve them via the first-order term, while recognize smoothly curved regions and recover them via the second-order term. To solve the optimization problem, we introduce an efficient iterative algorithm based on variable-splitting and augmented Lagrangian method. Extensive results and comparisons on synthetic and real scanning data validate that the proposed method outperforms the state-of-the-art methods visually and numerically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا