No Arabic abstract
The reduction of graphene oxide is one of the most facile methods to fabricate a large amount of graphene and the reduction rate of graphene oxide is related with the quality of synthesized graphene for its possible application. The reduction rate is usually determined by using various spectroscopy measurements such as Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Here we propose that the magnetic data can be used as a means of determining the quality of graphene oxide (GO) and reduced graphene oxide (RGO) by the investigation of close relation between magnetic moment and chemical bonding state. Our experimental findings and previous theoretical studies suggest that hydroxyl functional groups in GO mainly contribute to Langevin paramagnetism, carboxyl functional groups in RGO1 act as the source for Pauli paramagnetism, and sp2 bonding state in RGO2 plays a major role on the diamagnetism. Especially in terms of mass production, the magnetic data is useful for decomposing the chemical bonding electronic states in graphene-like samples and judging their quality.
This manuscript presents the general approach to the understanding of the connection between bonding mechanism and electronic structure of graphene on metals. To demonstrate its validity, two limiting cases of the weakly and strongly bonded graphene on Al(111) and Ni(111) are considered, where the Dirac cone is preserved or fully destroyed, respectively. Furthermore, the electronic structure, i. e. doping level, hybridization effects, as well as a gap formation at the Dirac point of the intermediate system, graphene/Cu(111), is fully understood in the framework of the proposed approach. This work summarises the long-term debates regarding connection of the bonding strength and the valence band modification in the graphene/metal systems and paves a way for the effective control of the electronic states of graphene in the vicinity of the Fermi level.
Oxygen to iron abundance ratios of metal-poor stars provide information on nucleosynthesis yields from massive stars which end in Type II supernova explosions. Using a standard model of chemical evolution of the Galaxy we have reproduced the solar neighborhood abundance data and estimated the oxygen and iron yields of genuine SN II origin. The estimated yields are compared with the theoretical yields to derive the relation between the lower and upper mass limits in each generation of stars and the IMF slope. Independently of this relation, we furthermore derive the relation between the lower mass limit and the IMF slope from the stellar mass to light ratio in the solar neighborhood. These independent relations unambiguously determine the upper mass limit of $m_u=50 pm 10 M_sun$ and the IMF slope index of 1.3 - 1.6 above 1 M_sun. This upper mass limit corresponds to the mass beyond which stars end as black holes without ejecting processed matter into the interstellar medium. We also find that the IMF slope index below 0.5 M_sun cannot be much shallower than 0.8.
Hybrid 2D-2D materials composed by perpendicularly oriented covalent organic framework (COFs) and graphene were prepared and tested for energy storage applications. Diboronic acid molecules covalently attached to graphene oxide (GO) were used as nucleation sites for directing vertical growth of COF-1 nanosheets (v-COF-GO). The hybrid material shows forest of COF-1 nanosheets with thickness of ~3 to 15 nm in edge-on orientation relative to GO. The same reaction performed in absence of molecular pillars resulted in uncontrollable growth of thick COF-1 platelets parallel to the surface of GO. The v-COF-GO was converted into conductive carbon material preserving the nanostructure of precursor with ultrathin porous carbon nanosheets grafted to graphene in edge-on orientation. It was demonstrated as high-performance electrode material for supercapacitors. The molecular pillar approach can be used for preparation of many other 2D-2D materials with control of their relative orientation.
Radiative capture reactions play a crucial role in stellar nucleosynthesis but have proved challenging to determine experimentally. In particular, the large uncertainty ($sim$100%) in the measured rate of the $^{12}$C$(alpha,gamma)^{16}$O reaction is the largest source of uncertainty in any stellar evolution model. With development of new high current energy-recovery linear accelerators (ERLs) and high density gas targets, measurement of the $^{16}$O$(e,e^prime alpha)^{12}$C reaction close to threshold using detailed balance opens up a new approach to determine the $^{12}$C$(alpha,gamma)^{16}$O reaction rate with significantly increased precision ($<$20%). We present the formalism to relate photo- and electro-disintegration reactions and consider the design of an optimal experiment to deliver increased precision. Once the new ERLs come online, an experiment to validate the new approach we propose should be carried out. This new approach has broad applicability to radiative capture reactions in astrophysics.
In the present work, experimental study has been carried out to expose the thermal, mechanical, and microstructural properties of low carbon steel as well as to inspects the influence of etchant concentration and etching time on its microstructure. Ultra-low carbon steel, in the form of a sheet, was collected from the Mughal Steel Industry, Peshawar, Pakistan. The sample was chemically etched, using Nital as an etchant, by two different methods: first, by changing the etching time while keeping the composition of etchant the same and second, by keeping the time constant while varying the etchant composition in a range of 5-14 %. The microstructure analysis revealed that ultra-fine grain can be obtained for the etchant composition of 8 % nitric acid in ethanol. Additionally, we noticed that the best etching time, for getting a clear morphology, was 90 s. The X-ray diffraction revealed mainly alpha-iron. Thermal analysis showed a minor weight loss followed by weight gain of 1.31 wt %. Contraction and expansion, observed on the TDA curve, suggested the transformation of BCC to FCC structure. Our results indicated that the specimen is highly ductile, malleable and soft.