No Arabic abstract
The difference in proton radii measured with $mu p$ atoms and with $ep$ atoms and scattering remains an unexplained puzzle. The PSI MUSE proposal is to measure $mu p$ and $e p$ scattering in the same experiment at the same time. The experiment will determine cross sections, two-photon effects, form factors, and radii independently for the two reactions, and will allow $mu p$ and $ep$ results to be compared with reduced systematic uncertainties. These data should provide the best test of lepton universality in a scattering experiment to date, about an order of magnitude improvement over previous tests. Measuring scattering with both particle polarities will allow a test of two-photon exchange at the sub-percent level, about a factor of four improvement on uncertainties and over an order of magnitude more data points than previous low momentum transfer determinations, and similar to the current generation of higher momentum transfer electron experiments. The experiment has the potential to demonstrate whether the $mu p$ and $ep$ interactions are consistent or different, and whether any difference results from novel physics or two-photon exchange. The uncertainties are such that if the discrepancy is real it should be confirmed with $approx$5$sigma$ significance, similar to that already established between the regular and muonic hydrogen Lamb shift.
The Proton Radius Puzzle is the inconsistency between the proton radius determined from muonic hydrogen and the proton radius determined from atomic hydrogen level transitions and ep elastic scattering. No generally accepted resolution to the Puzzle has been found. Possible solutions generally fall into one of three categories: the two radii are different due to novel beyond-standard-model physics, the two radii are different due to novel aspects of nucleon structure, and the two radii are the same, but there are underestimated uncertainties or other issues in the ep experiments. The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institut is a simultaneous measurement of mu^+ p and e^+ p elastic scattering, as well as mu^- p and e^- p elastic scattering, which will allow a determination of the consistency of the mu p and the ep interactions. The differences between + and - charge scattering are sensitive to two-photon exchange effects, higher-order corrections to the scattering process. The slopes of the cross sections as Q^2 -> 0 determine the proton radius. We plan to measure relative cross sections at a typical level of a few tenths of a percent, which should allow the proton radius to be determined at the level of ~0.01 fm, similar to previous ep measurements. The measurements will test several possible explanations of the proton radius puzzle, including some models of beyond-standard-model physics, some models of novel hadronic physics, and some issues in the radius extraction from scattering data.
We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016.
This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with 6Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200 micrometer, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a 6Li-depleted glass bonded to a 6Li-enriched glass. The optical contact bonding is used between the scintillators in order to obtain a perfect optical contact. The scintillators detection efficiency is similar to that of a 3He Strelkov gas detector. Coupled to a digital data acquisition system, counting rates up to a few 10^5 counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for the regular runs of the neutron electric dipole moment experiment is presented.
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5m x 2.5m x 3m disturbances of the magnetic field are attenuated by factors of 5 to 50 at a bandwidth from $10^{-3}$ Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the nEDM measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.
The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius puzzle. To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.