Do you want to publish a course? Click here

Early Science with the Large Millimetre Telescope: Fragmentation of molecular clumps in the Galaxy

87   0   0.0 ( 0 )
 Added by Mark Heyer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sensitive, imaging observations of the 1.1 mm dust continuum emission from a 1 deg^2 area collected with the AzTEC bolometer camera on the Large Millimeter Telescope are presented. A catalog of 1545 compact sources is constructed based on a Wiener-optimization filter. These sources are linked to larger clump structures identified in the Bolocam Galactic Plane Survey. Hydrogen column densities are calculated for all sources and mass and mean volume densities are derived for the subset of sources for which kinematic distances can be assigned. The AzTEC sources are localized, high density peaks within the massive clumps of molecular clouds and comprise 5-15% of the clump mass. We examine the role of the gravitational instability in generating these fragments by comparing the mass of embedded AzTEC sources to the Jeans mass of the parent BGPS object. For sources with distances less than 6 kpc the fragment masses are comparable to the clump Jeans mass, despite having isothermal Mach numbers between 1.6 and 7.2. AzTEC sources linked to ultra-compact HII regions have mass surface densities greater than the critical value implied by the mass-size relationship of infrared dark clouds with high mass star formation while AzTEC sources associated with Class II methanol masers have mass surface densities greater than 0.7 g cm^{-2} that approaches the proposed threshold required to form massive stars.

rate research

Read More

Extremely high velocity emission likely related to jets is known to occur in some proto-Planetary Nebulae. However, the molecular complexity of this kinematic component is largely unknown. We observed the known extreme outflow from the proto-Planetary Nebula IRAS 16342-3814, a prototype water fountain, in the full frequency range from 73 to 111 GHz with the RSR receiver on the Large Millimetre Telescope. We detected the molecules SiO, HCN, SO, and $^{13}$CO. All molecular transitions, with the exception of the latter are detected for the first time in this source, and all present emission with velocities up to a few hundred km s$^{-1}$. IRAS 16342-3814 is therefore the only source of this kind presenting extreme outflow activity simultaneously in all these molecules, with SO and SiO emission showing the highest velocities found of these species in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component with a FWHM $sim$ 700 km s$^{-1}$. The extreme outflow gas consists of dense gas (n$_{rm H_2} >$ 10$^{4.8}$--10$^{5.7}$ cm$^{-3}$), with a mass larger than $sim$ 0.02--0.15 M$_{odot}$. The relatively high abundances of SiO and SO may be an indication of an oxygen-rich extreme high velocity gas.
We present a 1.1~mm census of dense cores in the Mon~R2 Giant Molecular Cloud with the AzTEC instrument on the Large Millimeter Telescope (LMT). We detect 295 cores (209 starless, and 86 with protostars) in a two square degree shallow survey. We also carry out a deep follow-up survey of 9 regions with low to intermediate ($3<A_V<7$) gas column densities and detect 60 new cores in the deeper survey which allows us to derive a completeness limit. After performing corrections for low signal-to-noise cores, we find a median core mass of $sim 2.1 text{M}_{odot}$ and a median size of $ 0.08$~pc. $46%$ of the cores (141) have masses exceeding the local Bonor-Ebert mass for cores with T=12K, suggesting that in the absence of supporting non-thermal pressure, these regions are unstable to gravitational collapse. We present the core mass function (CMF) for various subdivisions of the core sample. We find that cores with masses $>$10~$M_{odot}$ are exclusively found in regions with high core number densities and that the CMF of the starless cores has an excess of low-mass cores ($<$5~$M_{odot}$) compared to the CMF of protostellar cores. We report a power law correlation of index $1.99 pm 0.03$ between local core mass density and gas column density (as traced by Herschel) over a wide range of size scales (0.3-5~pc). This power law is consistent with that predicted for thermal fragmentation of a self-gravitating sheet.
We report an early science discovery of the CO(1-0) emission line in the collisional ring galaxy, VII Zw466, using the Redshift Search Receiver instrument on the Large Millimeter Telescope Alfonso Serrano.The apparent molecular-to-atomic gas ratio either places the ISM of VII Zw466 in the HI-dominated regime or implies a large quantity of CO-dark molecular gas, given its high star formation rate. The molecular gas densities and star formation rate densities of VII Zw466 are consistent with the standard Kennicutt-Schmidt star formation law even though we find this galaxy to be H2-deficient. The choice of CO-to-H2 conversion factors cannot explain the apparent H2 deficiency in its entirety. Hence, we find that the collisional ring galaxy, VII Zw466, is either largely deficient in both H2 and HI or contains a large mass of CO-dark gas. A low molecular gas fraction could be due to the enhancement of feedback processes from previous episodes of star formation as a result of the star-forming ISM being confined to the ring. We conclude that collisional ring galaxy formation is an extreme form of galaxy interaction that triggers a strong galactic-wide burst of star formation that may provide immediate negative feedback towards subsequent episodes of star formation---resulting in a short-lived star formation history or, at least, the appearance of a molecular gas deficit.
We present constraints on the dust continuum flux and inferred gas content of a gravitationally lensed massive quiescent galaxy at $z$=1.883$pm$0.001 using AzTEC 1.1mm imaging with the Large Millimeter Telescope. MRG-S0851 appears to be a prototypical massive compact quiescent galaxy, but has evidence that it experienced a centrally concentrated rejuvenation event in the last 100 Myr (see Akhshik et al. 2020). This galaxy is undetected in the AzTEC image but we calculate an upper limit on the millimeter flux and use this to estimate the H$_2$ mass limit via an empirically calibrated relation that assumes a constant molecular gas-to-dust ratio of 150. We constrain the 3$sigma$ upper limit of the H$_2$ fraction from the dust continuum in MRG-S0851 to be ${M_{H_2}/M_{star}}$ $leq$ 6.8%. MRG-S0851 has a low gas fraction limit with a moderately low sSFR owing to the recent rejuvenation episode, which together results in a relatively short depletion time of $<$0.6 Gyr if no further H$_2$ gas is accreted. Empirical and analytical models both predict that we should have detected molecular gas in MRG-S0851, especially given the rejuvenation episode; this suggests that cold gas and/or dust is rapidly depleted in at least some early quiescent galaxies.
116 - T. Wong 2002
A new astronomical window into the southern skies has been opened with the high-frequency upgrade to the Australia Telescope Compact Array (ATCA), which allows radio-interferometric mapping of sources at wavelengths as short as 3mm. In anticipation of the upgrades completion, a two-day workshop was held at the University of Melbourne in November 2001. The workshop covered a diverse range of fields, tied together by a common theme of identifying key areas where ATCA observations can have an impact. More than half of the talks were concerned with molecular clouds and star formation, with the remainder covering topics such as molecular gas in the Galactic Centre, Seyfert nuclei, and high-redshift objects. Some early results from the 3mm and 12mm prototype systems were also presented. In consultation with the speakers, we are presenting in this article a summary of the talks. The original slides are available at http://www.atnf.csiro.au/whats_on/workshops/mm_science2001/ .
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا