Do you want to publish a course? Click here

Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities

59   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radiation pressure, electrostriction, and photothermal forces have been investigated to evidence backaction, non-linearities and quantum phenomena in cavity optomechanics. We show here through a detailed study of the relative intensity of the cavity mechanical modes observed when exciting with pulsed lasers close to the GaAs optical gap that optoelectronic forces involving real carrier excitation and deformation potential interaction are the strongest mechanism of light-to-sound transduction in semiconductor GaAs/AlAs distributed Bragg reflector optomechanical resonators. We demonstrate that the ultrafast spatial redistribution of the photoexcited carriers in microcavities with massive GaAs spacers leads to an enhanced coupling to the fundamental 20 GHz vertically polarized mechanical breathing mode. The carrier diffusion along the growth axis of the device can be enhanced by increasing the laser power, or limited by embedding GaAs quantum wells in the cavity spacer, a strategy used here to prove and engineer the optoelectronic forces in phonon generation with real carriers. The wavelength dependence of the observed phenomena provide further proof of the role of optoelectronic forces. The optical forces associated to the different intervening mechanisms and their relevance for dynamical backaction in optomechanics are evaluated using finite-element methods. The results presented open the path to the study of hitherto seldom investigated dynamical backaction in optomechanical solid-state resonators in the presence of optoelectronic forces.



rate research

Read More

A hybrid device comprising a (Al)GaAs quantum dot heterostructure and a LiNbO$_3$ surface acoustic wave resonator is fabricated by heterointegration. High acoustic quality factors $Q>4000$ are demonstrated for an operation frequency $fapprox 300$ MHz. The measured large quality factor-frequency products $Qtimes f>10^{12}$ ensures the suppression of decoherence due to thermal noise for temperatures exceeding $T>50,mathrm{K}$. Frequency and position dependent optomechanical coupling of single quantum dots and the resonator modes is observed.
The coupling of mechanical and optical degrees of freedom via radiation pressure has been a subject of early research in the context of gravitational wave detection. Recent experimental advances have allowed studying for the first time the modifications of mechanical dynamics provided by radiation pressure. This paper reviews the consequences of back-action of light confined in whispering-gallery dielectric micro-cavities, and presents a unified treatment of its two manifestations: notably the parametric instability (parametric amplification) and radiation pressure back-action cooling. Parametric instability offers a novel photonic clock which is driven purely by the pressure of light. In contrast, radiation pressure cooling can surpass existing cryogenic technologies and offers cooling to phonon occupancies below unity and provides a route towards cavity Quantum Optomechanics
114 - X. Q. Luo , D. L. Wang , H. Fan 2012
We present a realization of two-qubit controlled-phase gate, based on the linear and nonlinear properties of the probe and signal optical pulses in an asymmetric GaAs/AlGaAs double quantum wells. It is shown that, in the presence of cross-phase modulation, a giant cross-Kerr nonlinearity and mutually matched group velocities of the probe and signal optical pulses can be achieved while realizing the suppression of linear and self-Kerr optical absorption synchronously. These characteristics serve to exhibit an all-optical two-qubit controlled-phase gate within efficiently controllable photon-photon entanglement by semiconductor mediation. In addition, by using just polarizing beam splitters and half-wave plates, we propose a practical experimental scheme to discriminate the maximally entangled polarization state of two-qubit through distinguishing two out of the four Bell states. This proposal potentially enables the realization of solid states mediated all-optical quantum computation and information processing.
We propose a spectrometric method to detect a classical weak force acting upon the moving end mirror in a cavity optomechanical system. The force changes the equilibrium position of the end mirror, and thus the resonance frequency of the cavity field depends on the force to be detected. As a result, the magnitude of the force can be inferred by analyzing the single-photon emission and scattering spectra of the optomechanical cavity. Since the emission and scattering processes are much faster than the characteristic mechanical dissipation, the influence of the mechanical thermal noise is negligible in this spectrometric detection scheme. We also extent this spectrometric method to detect a monochromatic oscillating force by utilizing an optomechanical coupling modulated at the same frequency as the force.
Optomechanical devices operated at their quantum limit open novel perspectives for the ultrasensitive determination of mass and displacement, and also in the broader field of quantum technologies. The access to higher frequencies implies operation at higher temperatures and stronger immunity to environmental noise. We propose and demonstrate here a new concept of quantum well photoelastic comb for the efficient coupling of light to optomechanical resonances at hundreds of GHz in semiconductor hybrid resonators. A purposely designed ultra-high resolution Raman spectroscopy set-up is exploited to evidence the transfer of spectral weight from the mode at 60 GHz to modes at 190-230 GHz, corresponding to the $8^{th}$ and $10^{th}$ overtone of the fundamental breathing mode of the light-sound cavities. The coupling to mechanical frequencies two orders of magnitude larger than alternative approaches is attained without reduction of the optomechanical constant $g_0$. The wavelength dependence of the optomechanical coupling further proves the role of resonant photoelastic interaction, highlighting the potentiality to access strong-coupling regimes. The experimental results show that electrostrictive forces allow for the design of devices optimized to selectively couple to specific mechanical modes. Our proposal opens up exciting opportunities towards the implementation of novel approaches applicable in quantum and ultra-high frequency information technologies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا