Studying the physical conditions structuring the young circumstellar disks is required for understanding the onset of planet formation. Of particular interest is the protoplanetary disk surrounding the Herbig star MWC480. The structure and properties of the circumstellar disk of MWC480 are studied by infrared interferometry and interpreted from a modeling approach. New observations are driving this study, in particular some recent Very Large Telescope Interferometer (VLTI)/MIDI data acquired in December 2013. Our one-component disk model could not reproduce simultaneously all our data: the Spectral Energy Distribution, the near-infrared Keck Interferometer data and the mid-infrared data obtained with the MIDI instrument. In order to explain all measurements, one possibility is to add an asymmetry in our one-component disk model with the assumption that the structure of the disk of MWC480 has not varied with time. Several scenarios are tested, and the one considering the presence of an azimuthal bright feature in the inner component of the disk model provides a better fit of the data. (In this study, we assumed that the size of the outer disk of MWC480 to be 20 au since most of the near and mid-IR emissions come from below 20 au. In our previous study (Jamialahmadi et al. 2015), we adopted an outer radius of 80 au, which is consistent with the value found by previous studies based on mm observations).