No Arabic abstract
Many-body localization (MBL) is a result of the balance between interference-based Anderson localization and many-body interactions in an ultra-high dimensional Fock space. It is usually expected that dissipation is blurring interference and destroying that balance so that the asymptotic state of a system with an MBL Hamiltonian does not bear localization signatures. We demonstrate, within the framework of the Lindblad formalism, that the system can be brought into a steady state with non-vanishing MBL signatures. We use a set of dissipative operators acting on pairs of connected sites (or spins), and show that the difference between ergodic and MBL Hamiltonians is encoded in the imbalance, entanglement entropy, and level spacing characteristics of the density operator. An MBL system which is exposed to the combined impact of local dephasing and pairwise dissipation evinces localization signatures hitherto absent in the dephasing-outshaped steady state.
We investigate the quantum dynamics of Two-Level Systems (TLS) in glasses at low temperatures (1 K and below). We study an ensemble of TLSs coupled to phonons. By integrating out the phonons within the framework of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation, we derive analytically the explicit form of the interactions among TLSs, and of the dissipation terms. We find that the unitary dynamics of the system shows clear signatures of Many-Body Localization physics. We study numerically the time behavior of the concurrence, which measures pairwise entanglement also in non-isolated systems, and show that it presents a power-law decay both in the absence and in the presence of dissipation, if the latter is not too large. These features can be ascribed to the strong, long-tailed disorder characterizing the distributions of the model parameters. Our findings show that assuming ergodicity when discussing TLS physics might not be justified for all kinds of experiments on low-temperature glasses.
In the presence of disorder, an interacting closed quantum system can undergo many-body localization (MBL) and fail to thermalize. However, over long times even weak couplings to any thermal environment will necessarily thermalize the system and erase all signatures of MBL. This presents a challenge for experimental investigations of MBL, since no realistic system can ever be fully closed. In this work, we experimentally explore the thermalization dynamics of a localized system in the presence of controlled dissipation. Specifically, we find that photon scattering results in a stretched exponential decay of an initial density pattern with a rate that depends linearly on the scattering rate. We find that the resulting susceptibility increases significantly close to the phase transition point. In this regime, which is inaccessible to current numerical studies, we also find a strong dependence on interactions. Our work provides a basis for systematic studies of MBL in open systems and opens a route towards extrapolation of closed system properties from experiments.
It is typically assumed that disorder is essential to realize Anderson localization. Recently, a number of proposals have suggested that an interacting, translation invariant system can also exhibit localization. We examine these claims in the context of a one-dimensional spin ladder. At intermediate time scales, we find slow growth of entanglement entropy consistent with the phenomenology of many-body localization. However, at longer times, all finite wavelength spin polarizations decay in a finite time, independent of system size. We identify a single length scale which parametrically controls both the eventual spin transport times and the divergence of the susceptibility to spin glass ordering. We dub this long pre-thermal dynamical behavior, intermediate between full localization and diffusion, quasi-many body localization.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for increasing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
We demonstrate that many-body localization of two-dimensional weakly interacting bosons in disorder remains stable in the thermodynamic limit at sufficiently low temperatures. Highly energetic particles destroy the localized state only above a critical temperature, which increases with the strength of the disorder. If the particle distribution is truncated at high energies, as it does for cold atom systems, the localization can be stable at any temperature.