No Arabic abstract
We prove that R. Thompson groups F, T, V have linear divergence functions.
A subset $S$ of a group $G$ invariably generates $G$ if $G= langle s^{g(s)} | s in Srangle$ for every choice of $g(s) in G,s in S$. We say that a group $G$ is invariably generated if such $S$ exists, or equivalently if $S=G$ invariably generates $G$. In this paper, we study invariable generation of Thompson groups. We show that Thompson group $F$ is invariable generated by a finite set, whereas Thompson groups $T$ and $V$ are not invariable generated.
The groups G_{k,1} of Richard Thompson and Graham Higman can be generalized in a natural way to monoids, that we call M_{k,1}, and to inverse monoids, called Inv_{k,1}; this is done by simply generalizing bijections to partial functions or partial injective functions. The monoids M_{k,1} have connections with circuit complexity (studied in another paper). Here we prove that M_{k,1} and Inv_{k,1} are congruence-simple for all k. Their Green relations J and D are characterized: M_{k,1} and Inv_{k,1} are J-0-simple, and they have k-1 non-zero D-classes. They are submonoids of the multiplicative part of the Cuntz algebra O_k. They are finitely generated, and their word problem over any finite generating set is in P. Their word problem is coNP-complete over certain infinite generating sets. Changes in this version: Section 4 has been thoroughly revised, and errors have been corrected; however, the main results of Section 4 do not change. Sections 1, 2, and 3 are unchanged, except for the proof of Theorem 2.3, which was incomplete; a complete proof was published in the Appendix of reference [6], and is also given here.
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having cut-points in their asymptotic cones. By Olshanskii-Osin-Sapir, that property is weaker than the property of having Morse (rank 1) quasi-geodesics. Using our characterization of Morse quasi-geodesics, we give a new proof of the theorem of Farb-Kaimanovich-Masur that states that mapping class groups cannot contain copies of irreducible lattices in semi-simple Lie groups of higher ranks. It also gives a generalization of the result of Birman-Lubotzky-McCarthy about solvable subgroups of mapping class groups not covered by the Tits alternative of Ivanov and McCarthy. We show that any group acting acylindrically on a simplicial tree or a locally compact hyperbolic graph always has many periodic Morse quasi-geodesics (i.e. Morse elements), so its divergence functions are never linear. We also show that the same result holds in many cases when the hyperbolic graph satisfies Bowditchs properties that are weaker than local compactness. This gives a new proof of Behrstocks result that every pseudo-Anosov element in a mapping class group is Morse. On the other hand, we conjecture that lattices in semi-simple Lie groups of higher rank always have linear divergence. We prove it in the case when the $mathbb{Q}$-rank is 1 and when the lattice is $SL_n(mathcal{O}_S)$ where $nge 3$, $S$ is a finite set of valuations of a number field $K$ including all infinite valuations, and $mathcal{O}_S$ is the corresponding ring of $S$-integers.
Recently Vaughan Jones showed that the R. Thompson group $F$ encodes in a natural way all knots, and a certain subgroup $vec F$ of $F$ encodes all oriented knots. We answer several questions of Jones about $vec F$. In particular we prove that the subgroup $vec F$ is generated by $x_0x_1, x_1x_2, x_2x_3$ (where $x_i, i=0,1,2,...$ are the standard generators of $F$) and is isomorphic to $F_3$, the analog of $F$ where all slopes are powers of $3$ and break points are $3$-adic rationals. We also show that $vec F$ coincides with its commensurator. Hence the linearization of the permutational representation of $F$ on $F/vec F$ is irreducible.
We prove that Thompsons group $F$ has a subgroup $H$ such that the conjugacy problem in $H$ is undecidable and the membership problem in $H$ is easily decidable. The subgroup $H$ of $F$ is a closed subgroup of $F$. That is, every function in $F$ which is a piecewise-$H$ function belongs to $H$. Other interesting examples of closed subgroups of $F$ include Jones subgroups $overrightarrow{F}_n$ and Jones $3$-colorable subgroup $mathcal F$. By a recent result of the first author, all maximal subgroups of $F$ of infinite index are closed. In this paper we prove that if $Kleq F$ is finitely generated then the closure of $K$, i.e., the smallest closed subgroup of $F$ which contains $K$, is finitely generated. We also prove that all finitely generated closed subgroups of $F$ are undistorted in $F$. In particular, all finitely generated maximal subgroups of $F$ are undistorted in $F$.