No Arabic abstract
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
We consider the linear stability of chiral matter-wave solitons described by a density-dependent gauge theory. By studying the associated Bogoliubov-de Gennes equations both numerically and analytically, we find that the stability problem effectively reduces to that of the standard Gross-Pitaevskii equation, proving that the solitons are stable to linear perturbations. In addition, we formulate the stability problem in the framework of the Vakhitov-Kolokolov criterion and provide supplementary numerical simulations which illustrate the absence of instabilities when the soliton is initially perturbed.
We show how access to sufficiently flexible trapping potentials could be exploited in the generation of three-dimensional atomic bright matter-wave solitons. Our proposal provides a route towards producing bright solitonic states with good fidelity, in contrast to, for example, a non-adiabatic sweeping of an applied magnetic field through a Feshbach resonance.
Reflection of wave packets from downward potential steps and attractive potentials, known as a quantum reflection, has been explored for bright matter-wave solitons with the main emphasis on the possibility to trap them on top of a pedestal-shaped potential. In numerical simulations, we observed that moving solitons return from the borders of the potential and remain trapped for a sufficiently long time. The shuttle motion of the soliton is accompanied by shedding some amount of matter at each reflection from the borders of the trap, thus reducing its norm. The one- and two- soliton configurations are considered. A discontinuous jump of trajectories of colliding solitons has been discussed. The time-shift observed in a step-like decay of the moving solitons norm in the two-soliton configuration is linked to the trajectory jump phenomenon. The obtained results can be of interest for the design of new soliton experiments with Bose-Einstein condensates.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton trains in the quasi one-dimensional confinement is shown. Additionally, fragmentation of a BEC has been observed outside confinement, in free space. In the end a double BEC production setup for studying soliton collisions is described.
We study the stability, form and interaction of single and multiple dark solitons in quasi-one-dimensional dipolar Bose-Einstein condensates. The solitons are found numerically as stationary solutions in the moving frame of a non-local Gross Pitaevskii equation, and characterized as a function of the key experimental parameters, namely the ratio of the dipolar atomic interactions to the van der Waals interactions, the polarization angle and the condensate width. The solutions and their integrals of motion are strongly affected by the phonon and roton instabilities of the system. Dipolar matter-wave dark solitons propagate without dispersion, and collide elastically away from these instabilities, with the dipolar interactions contributing an additional repulsion or attraction to the soliton-soliton interaction. However, close to the instabilities, the collisions are weakly dissipative.