No Arabic abstract
We present a method for efficient learning of control policies for multiple related robotic motor skills. Our approach consists of two stages, joint training and specialization training. During the joint training stage, a neural network policy is trained with minimal information to disambiguate the motor skills. This forces the policy to learn a common representation of the different tasks. Then, during the specialization training stage we selectively split the weights of the policy based on a per-weight metric that measures the disagreement among the multiple tasks. By splitting part of the control policy, it can be further trained to specialize to each task. To update the control policy during learning, we use Trust Region Policy Optimization with Generalized Advantage Function (TRPOGAE). We propose a modification to the gradient update stage of TRPO to better accommodate multi-task learning scenarios. We evaluate our approach on three continuous motor skill learning problems in simulation: 1) a locomotion task where three single legged robots with considerable difference in shape and size are trained to hop forward, 2) a manipulation task where three robot manipulators with different sizes and joint types are trained to reach different locations in 3D space, and 3) locomotion of a two-legged robot, whose range of motion of one leg is constrained in different ways. We compare our training method to three baselines. The first baseline uses only joint training for the policy, the second trains independent policies for each task, and the last randomly selects weights to split. We show that our approach learns more efficiently than each of the baseline methods.
Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand.
We develop a mathematical framework for solving multi-task reinforcement learning (MTRL) problems based on a type of policy gradient method. The goal in MTRL is to learn a common policy that operates effectively in different environments; these environments have similar (or overlapping) state spaces, but have different rewards and dynamics. We highlight two fundamental challenges in MTRL that are not present in its single task counterpart, and illustrate them with simple examples. We then develop a decentralized entropy-regularized policy gradient method for solving the MTRL problem, and study its finite-time convergence rate. We demonstrate the effectiveness of the proposed method using a series of numerical experiments. These experiments range from small-scale GridWorld problems that readily demonstrate the trade-offs involved in multi-task learning to large-scale problems, where common policies are learned to navigate an airborne drone in multiple (simulated) environments.
Reward decomposition is a critical problem in centralized training with decentralized execution~(CTDE) paradigm for multi-agent reinforcement learning. To take full advantage of global information, which exploits the states from all agents and the related environment for decomposing Q values into individual credits, we propose a general meta-learning-based Mixing Network with Meta Policy Gradient~(MNMPG) framework to distill the global hierarchy for delicate reward decomposition. The excitation signal for learning global hierarchy is deduced from the episode reward difference between before and after exercise updates through the utility network. Our method is generally applicable to the CTDE method using a monotonic mixing network. Experiments on the StarCraft II micromanagement benchmark demonstrate that our method just with a simple utility network is able to outperform the current state-of-the-art MARL algorithms on 4 of 5 super hard scenarios. Better performance can be further achieved when combined with a role-based utility network.
We present methods for multi-task learning that take advantage of natural groupings of related tasks. Task groups may be defined along known properties of the tasks, such as task domain or language. Such task groups represent supervised information at the inter-task level and can be encoded into the model. We investigate two variants of neural network architectures that accomplish this, learning different feature spaces at the levels of individual tasks, task groups, as well as the universe of all tasks: (1) parallel architectures encode each input simultaneously into feature spaces at different levels; (2) serial architectures encode each input successively into feature spaces at different levels in the task hierarchy. We demonstrate the methods on natural language understanding (NLU) tasks, where a grouping of tasks into different task domains leads to improved performance on ATIS, Snips, and a large inhouse dataset.
Many engineering problems have multiple objectives, and the overall aim is to optimize a non-linear function of these objectives. In this paper, we formulate the problem of maximizing a non-linear concave function of multiple long-term objectives. A policy-gradient based model-free algorithm is proposed for the problem. To compute an estimate of the gradient, a biased estimator is proposed. The proposed algorithm is shown to achieve convergence to within an $epsilon$ of the global optima after sampling $mathcal{O}(frac{M^4sigma^2}{(1-gamma)^8epsilon^4})$ trajectories where $gamma$ is the discount factor and $M$ is the number of the agents, thus achieving the same dependence on $epsilon$ as the policy gradient algorithm for the standard reinforcement learning.