Locally extremal geodesic loops on Riemannian manifold


Abstract in English

This note proves that any locally extremal non-self-conjugate geodesic loop in a Riemannian manifold is a closed geodesic. As a consequence, any complete and non-contractible Riemannian manifold with diverging injectivity radii along diverging sequences and without points conjugate to themselves, possesses a minimizing closed geodesic.

Download