Do you want to publish a course? Click here

The terrestrial late veneer from core disruption of a lunar-sized impactor

81   0   0.0 ( 0 )
 Added by Hidenori Genda
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Overabundances in highly siderophile elements (HSEs) of Earths mantle can be explained by conveyance from a singular, immense (3000 km in a diameter) Late Veneer impactor of chondritic composition, subsequent to lunar formation and terrestrial core-closure. Such rocky objects of approximately lunar mass (about 0.01 M_E) ought to be differentiated, such that nearly all of their HSE payload is sequestered into iron cores. Here, we analyze the mechanical and chemical fate of the core of such a Late Veneer impactor, and trace how its HSEs are suspended - and thus pollute - the mantle. For the statistically most-likely oblique collision (about 45degree), the impactors core elongates and thereafter disintegrates into a metallic hail of small particles (about 10 m). Some strike the orbiting Moon as sesquinary impactors, but most re-accrete to Earth as secondaries with further fragmentation. We show that a single oblique impactor provides an adequate amount of HSEs to the primordial terrestrial silicate reservoirs via oxidation of (<m-sized) metal particles with a hydrous, pre-impact, early Hadean Earth.



rate research

Read More

Recent advances in our understanding of the dynamical history of the Solar system have altered the inferred bombardment history of the Earth during accretion of the Late Veneer, after the Moon-forming impact. We investigate how the bombardment by planetesimals left-over from the terrestrial planet region after terrestrial planet formation, as well as asteroids and comets, affects the evolution of Earths early atmosphere. We develop a new statistical code of stochastic bombardment for atmosphere evolution, combining prescriptions for atmosphere loss and volatile delivery derived from hydrodynamic simulations and theory with results from dynamical modelling of realistic populations of impactors. We find that for an initially Earth-like atmosphere impacts cause moderate atmospheric erosion with stochastic delivery of large asteroids giving substantial growth ($times 10$) in a few $%$ of cases. The exact change in atmosphere mass is inherently stochastic and dependent on the dynamics of the left-over planetesimals. We also consider the dependence on unknowns including the impactor volatile content, finding that the atmosphere is typically completely stripped by especially dry left-over planetesimals ($<0.02 ~ %$ volatiles). Remarkably, for a wide range of initial atmosphere masses and compositions, the atmosphere converges towards similar final masses and compositions, i.e. initially low mass atmospheres grow whereas massive atmospheres deplete. While the final properties are sensitive to the assumed impactor properties, the resulting atmosphere mass is close to that of current Earth. The exception to this is that a large initial atmosphere cannot be eroded to the current mass unless the atmosphere was initially primordial in composition.
The flashes from meteoroid impacts on the Moon are useful in determining the flux of impactors with masses as low as a few tens of grams. A routine monitoring program at NASAs Marshall Space Flight Center has recorded over 300 impacts since 2006. A selection of 126 flashes recorded during periods of photometric skies was analyzed, creating the largest and most homogeneous dataset of lunar impact flashes to date. Standard CCD photometric techniques were applied to the video and the luminous energy, kinetic energy, and mass are estimated for each impactor. Shower associations were determined for most of the impactors and a range of luminous efficiencies was considered. The flux to a limiting energy of 2.5E-6 kT TNT or 1.05E7 J is 1.03E-7 km-2 hr-1 and the flux to a limiting mass of 30 g is 6.14E-10 m-2 yr-1 at the Moon. Comparisons made with measurements and models of the meteoroid population indicate that the flux of objects in this size range is slightly lower (but within error bars) than flux at this size from the near Earth object and fireball population by Brown et al. 2002. Size estimates for the crater detected by Lunar Reconnaissance Orbiter from a large impact observed on March 17, 2013 are also briefly discussed.
Surveys reveal that terrestrial- to Neptune-sized planets (1 $< R <$ 4 R$_{rm{Earth}}$) are the most common type of planets in our galaxy. Detecting and characterizing such small planets around nearby stars holds the key to understanding the diversity of exoplanets and will ultimately address the ubiquitousness of life in the universe. The following fundamental questions will drive research in the next decade and beyond: (1) how common are terrestrial to Neptune-sized planets within a few AU of their host star, as a function of stellar mass? (2) How does planet composition depend on planet mass, orbital radius, and host star properties? (3) What are the energy budgets, atmospheric dynamics, and climates of the nearest worlds? Addressing these questions requires: a) diffraction-limited spatial resolution; b) stability and achievable contrast delivered by adaptive optics; and c) the light-gathering power of extremely large telescopes (ELTs), as well as multi-wavelength observations and all-sky coverage enabled by a comprehensive US ELT Program. Here we provide an overview of the challenge, and promise of success, in detecting and comprehensively characterizing small worlds around the very nearest stars to the Sun with ELTs. This white paper extends and complements the material presented in the findings and recommendations published in the National Academy reports on Exoplanet Science Strategy and Astrobiology Strategy for the Search for Life in the Universe.
162 - Jack Burns 2011
The Lunar University Network for Astrophysics Research (LUNAR) undertakes investigations across the full spectrum of science within the mission of the NASA Lunar Science Institute (NLSI), namely science of, on, and from the Moon. The LUNAR teams work on science of and on the Moon, which is the subject of this white paper, is conducted in the broader context of ascertaining the content, origin, and evolution of the solar system.
The Asteroid Redirect Mission (ARM) proposes to retrieve a near-Earth asteroid and position it in a lunar distant retrograde orbit (DRO) for later study, crewed exploration, and ultimately resource exploitation. During the Caltech Space Challenge, a recent workshop to design a crewed mission to a captured asteroid in a DRO, it became apparent that the asteroids low escape velocity (<1 cm s$^{-1}$) would permit the escape of asteroid particles during any meaningful interaction with astronauts or robotic probes. This Note finds that up to 5% of escaped asteroid fragments will cross Earth-geosynchronous orbits and estimates the risk to satellites from particle escapes or complete disruption of a loosely bound rubble pile.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا