Do you want to publish a course? Click here

A precise measurement of the orbital period parameters of Cygnus X-3

70   0   0.0 ( 0 )
 Added by Yash Bhargava
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray light curves of Cygnus X-3 as measured by the recently launched AstroSat satellite. The light curve folded over the binary period of 4.8 hours shows a remarkable stability over the past 45 years and we find that we can use this information to measure the zero point to better than 100 s. We revisit the historical binary phase measurements and examine the stability of the binary period over 45 years. We present a new binary ephemeris with the period and period derivative determined to an accuracy much better than previously reported. We do not find any evidence for a second derivative in the period variation. The precise binary period measurements, however, indicate a hint of short term episodic variations in periods. Interestingly, these short term period variations coincide with the period of enhanced jet activity exhibited by the source. We discuss the implications of these observations on the nature of the binary system.



rate research

Read More

We address the problem where the X-ray emission lines are formed and investigate orbital dynamics using Chandra HETG observations, photoionizing calculations and numerical wind-particle simulations.The observed Si XIV (6.185 A) and S XVI (4.733 A) line profiles at four orbital phases were fitted with P Cygni-type profiles consisting of an emission and a blue-shifted absorption component. In the models, the emission originates in the photoionized wind of the WR companion illuminated by a hybrid source: the X-ray radiation of the compact star and the photospheric EUV-radiation from the WR star. The emission component exhibits maximum blue-shift at phase 0.5 (when the compact star is in front), while the velocity of the absorption component is constant (around -900 km/s). The simulated FeXXVI Ly alpha line (1.78 A) from the wind is weak compared to the observed one. We suggest that it originates in the vicinity of the compact star, with a maximum blue shift at phase 0.25 (compact star approaching). By combining the mass function derived with that from the infrared HeI absorption (arising from the WR companion), we constrain the masses and inclination of the system. Both a neutron star at large inclination (over 60 degrees) and a black hole at small inclination are possible solutions.
Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorers All Sky Monitor. We are able to set broad limits on how the mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phase 0 (defined as the time of of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass loss rate in the soft state (Mdot<2x10^{-6} Msun/yr) than the limit in the hard state (Mdot<4x10^{-6} Msun/yr). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.
The orbital period of Sco X-1 was first identified by Gottlieb et al. (1975). While this has been confirmed on multiple occasions, this work, based on nearly a century of photographic data, has remained the reference in defining the system ephemeris ever since. It was, however, called into question when Vanderlinde et al. (2003) claimed to find the one-year alias of the historical period in RXTE/ASM data and suggested that this was the true period rather than that of Gottlieb et al. (1975). We examine data from the All Sky Automated Survey (ASAS) spanning 2001-2009. We confirm that the period of Gottlieb et al. (1975) is in fact the correct one, at least in the optical, with the one-year alias strongly rejected by these data. We also provide a modern time of minimum light based on the ASAS data.
We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV to 30 TeV. The effective exposure time amounts to a total of about 44 hours, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.
AGILE data on Cygnus X-3 are reviewed focussing on the correlation between the production of gamma-ray transient emission and spectral state changes of the source. AGILE clearly establishes a relation between enhanced gamma-ray emission and the quenched radio/hard X-ray states that precede in general major radio flares. We briefly discuss the theoretical implications of our findings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا