Decomposing GR(1) Games with Singleton Liveness Guarantees for Efficient Synthesis


Abstract in English

Temporal logic based synthesis approaches are often used to find trajectories that are correct-by-construction for tasks in systems with complex behavior. Some examples of such tasks include synchronization for multi-agent hybrid systems, reactive motion planning for robots. However, the scalability of such approaches is of concern and at times a bottleneck when transitioning from theory to practice. In this paper, we identify a class of problems in the GR(1) fragment of linear-time temporal logic (LTL) where the synthesis problem allows for a decomposition that enables easy parallelization. This decomposition also reduces the alternation depth, resulting in more efficient synthesis. A multi-agent robot gridworld example with coordination tasks is presented to demonstrate the application of the developed ideas and also to perform empirical analysis for benchmarking the decomposition-based synthesis approach.

Download