Do you want to publish a course? Click here

A practical scheme for constructing the minimum weight states of the su(n)-Lipkin model in arbitrary fermion number

84   0   0.0 ( 0 )
 Added by Yasuhiko Tsue
 Publication date 2017
  fields
and research's language is English
 Authors Y. Tsue




Ask ChatGPT about the research

With the aim of performing an argument supplement to the previous paper by the present authors, in this paper, a practical scheme for constructing the minimum weight states of the su(n)-Lipkin model in arbitrary fermion number is discussed. The idea comes from the following two points : (i) consideration on the property of one-fermion transfer induced by the su(n)-generators in the Lipkin model and (ii) use of the auxiliary su(2)-algebra presented by the present authors. The form obtained under the points (i) and (ii) is simple.



rate research

Read More

The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying the su(n)-algebra are investigated systematically. The basic idea is to use the su(2)-algebra which is independent of the su(n)-algebra. This idea has been already presented by the present authors in the case of the conventional Lipkin model consisting of two single-particle levels and obeying the su(2)-algebra. If following this idea, the minimum weight states are determined for any fermion number occupying appropriately n single-particle levels. Naturally, the conventional minimum weight state is included: all fermions occupy energetically the lowest single-particle level in the absence of interaction. The cases n=2, 3, 4 and 5 are discussed in rather detail.
A possible form of the Lipkin model obeying the su(6)-algebra is presented. It is a natural generalization from the idea for the su(4)-algebra recently proposed by the present authors. All the relation appearing in the present form can be expressed in terms of the spherical tensors in the su(2)-algebras. For specifying the linearly independent basis completely, twenty parameters are introduced. It is concluded that, in these parameters, the ten denote the quantum numbers coming from the eigenvalues of some hermitian operators. The five in these ten determine the minimum weight state.
Standing on the results for the minimum weight states obtained in the previous paper (I), an idea how to construct the linearly independent basis is proposed for the su(n)-Lipkin model. This idea starts in setting up m independent su(2)-subalgebras in the cases with n=2m and n=2m+1 (m=2,3,4,...). The original representation is re-formed in terms of the spherical tensors for the su(n)-generators built under the su(2)-subalgebras. Through this re-formation, the su(m)-subalgebra can be found. For constructing the linearly independent basis, not only the su(2)-algebras but also the su(m)-subalgebra play a central role. Some concrete results in the cases with n=2, 3, 4 and 5 are presented.
54 - A.Kuriyama 2000
On the basis of the formalism proposed by three of the present authors (A.K., J.P.and M.Y.), generalized Lipkin model consisting of (M+1) single-particle levels is investigated. This model is essentially a kind of the su(M+1)-algebraic model and, in contrast to the conventional treatment, the case, where fermions are partially occupied in each level, is discussed. The scheme for obtaining the orthogonal set for the irreducible representation is presented.
New boson representation of the su(2)-algebra proposed by the present authors for describing the damped and amplified oscillator is examined in the Lipkin model as one of simple many-fermion models. This boson representation is expressed in terms of two kinds of bosons with a certain positive parameter. In order to describe the case of any fermion number, third boson is introduced. Through this examination, it is concluded that this representation is well workable for the boson realization of the Lipkin model in any fermion number.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا