Do you want to publish a course? Click here

Cosmic-ray Antimatter

71   0   0.0 ( 0 )
 Added by Kfir Blum
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, space-born experiments have delivered new measurements of high energy cosmic-ray (CR) $bar p$ and $e^+$. In addition, unprecedented sensitivity to CR composite anti-nuclei anti-d and anti-He is expected to be achieved in the near future. We report on the theoretical interpretation of these measurements. While CR antimatter is a promising discovery tool for new physics or exotic astrophysical phenomena, an irreducible background arises from secondary production by primary CR collisions with interstellar matter. Understanding this irreducible background or constraining it from first principles is an interesting challenge. We review the attempt to obtain such understanding and apply it to CR $bar p,, e^+,$ anti-d and anti-He. Based on state of the art Galactic cosmic ray measurements, dominated currently by the AMS-02 experiment, we show that: (i) CR $bar p$ most likely come from CR-gas collisions; (ii) $e^+$ data is consistent with, and suggestive of the same secondary astrophysical production mechanism responsible for $bar p$ and dominated by proton-proton collisions. In addition, based on recent accelerator analyses we show that the flux of secondary high energy anti-He may be observable with a few years exposure of AMS-02. We highlight key open questions, as well as the role played by recent and upcoming space and accelerator data in clarifying the origins of CR antimatter.



rate research

Read More

73 - Philipp Mertsch 2020
Despite significant efforts over the last decade, the origin of the cosmic ray positron excess has still not been unambiguously established. A popular class of candidates are pulsars or pulsar wind nebulae but these cannot account for the observed hard spectrum of cosmic ray antiprotons. We revisit the alternative possibility that the observed high-energy positrons are secondaries created by spallation in supernova remnants during the diffusive shock acceleration of the primary cosmic rays, which are further accelerated by the same shocks. The resulting source spectrum of positrons at high energies is then naturally harder than that of the primaries, as is the spectrum of other secondaries such as antiprotons. We present the first comprehensive investigation of the full parameter space of this model -- both the source parameters as well as those governing galactic transport. Various parameterisations of the cross-sections for the production of positrons and antiprotons are considered, and the uncertainty in the model parameters discussed. We obtain an excellent fit to the recent precision measurements by AMS-02 of cosmic ray protons, helium, positrons and antiprotons, as well as of various primary and secondary nuclei. The only notable deviation is an excess of antiprotons around ~10 GeV. This model thus provides an economical explanation of the spectra of all secondary species -- from a single well-motivated population of sources.
The search for the origin of cosmic rays is as active as ever, mainly driven by new insights provided by recent pieces of observation. Much effort is being channelled in putting the so called supernova paradigm for the origin of galactic cosmic rays on firmer grounds, while at the highest energies we are trying to understand the observed cosmic ray spectra and mass composition and relating them to potential sources of extragalactic cosmic rays. Interestingly, a topic that has acquired a dignity of its own is the investigation of the transition region between the galactic and extragalactic components, once associated with the ankle and now increasingly thought to be taking place at somewhat lower energies. Here we summarize recent developments in the observation and understanding of galactic and extragalactic cosmic rays and we discuss the implications of such findings for the modelling of the transition between the two.
The distribution of cosmic rays in the Galaxy at energies above few TeVs is still uncertain and this affects the expectations for the diffuse gamma flux produced by hadronic interactions of cosmic rays with the interstellar gas. We show that the TeV gamma-ray sky can provide interesting constraints. Namely, we compare the flux from the galactic plane measured by Argo-YBJ, HESS, HAWC and Milagro with the expected flux due to diffuse emission and point-like and extended sources observed by HESS showing that experimental data can already discriminate among different hyphoteses for cosmic ray distribution. The constraints can be strengthened if the contribution of sources not resolved by HESS is taken into account.
We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.
Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic ray (UHECRs, above 10^8 GeV), photons, and neutrinos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا