New method for initial density reconstruction


Abstract in English

A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO) signals from observed galaxy distributions. We present a new efficient method to carry out this reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a performance comparable to that of state-of-the-art algorithms which were very recently put forward in the literature, with the reconstructed density field over $sim80%$ ($50%$) correlated with the initial condition at $klesssim0.6h/{rm Mpc}$ ($1.0h/{rm Mpc}$). With an example, we demonstrate that this method can significantly improve the accuracy of BAO reconstruction.

Download