Conjugate generalized linear mixed models for clustered data


Abstract in English

This article concerns a class of generalized linear mixed models for clustered data, where the random effects are mapped uniquely onto the grouping structure and are independent between groups. We derive necessary and sufficient conditions that enable the marginal likelihood of such class of models to be expressed in closed-form. Illustrations are provided using the Gaussian, Poisson, binomial and gamma distributions. These models are unified under a single umbrella of conjugate generalized linear mixed models, where conjugate refers to the fact that the marginal likelihood can be expressed in closed-form, rather than implying inference via the Bayesian paradigm. Having an explicit marginal likelihood means that these models are more computationally convenient, which can be important in big data contexts. Except for the binomial distribution, these models are able to achieve simultaneous conjugacy, and thus able to accommodate both unit and group level covariates.

Download