Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system


Abstract in English

We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is $0.2415361(36)$ days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at $K_2=39.3pm1.5$ km s$^{-1}$, implying a remarkably face-on inclination in the range 5--8$^{circ}$, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of $3.8pm0.7$ kpc, yielding a 0.3--10 keV X-ray luminosity of $6.1pm1.9times10^{33},{rm erg,s^{-1}}$, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that these variations are most consistent with emission from an asymmetric shock originating near the inner disk.

Download