Do you want to publish a course? Click here

Dual Conformal Symmetry, Integration-by-Parts Reduction, Differential Equations and the Nonplanar Sector

190   0   0.0 ( 0 )
 Added by Zvi Bern
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that dual conformal symmetry, mainly studied in planar $mathcal N = 4$ super-Yang-Mills theory, has interesting consequences for Feynman integrals in nonsupersymmetric theories such as QCD, including the nonplanar sector. A simple observation is that dual conformal transformations preserve unitarity cut conditions for any planar integrals, including those without dual conformal symmetry. Such transformations generate differential equations without raised propagator powers, often with the right hand side of the system proportional to the dimensional regularization parameter $epsilon$. A nontrivial subgroup of dual conformal transformations, which leaves all external momenta invariant, generates integration-by-parts relations without raised propagator powers, reproducing, in a simpler form, previous results from computational algebraic geometry for several examples with up to two loops and five legs. By opening up the two-loop three- and four-point nonplanar diagrams into planar ones, we find a nonplanar analog of dual conformal symmetry. As for the planar case this is used to generate integration-by-parts relations and differential equations. This implies that the symmetry is tied to the analytic properties of the nonplanar sector of the two-loop four-point amplitude of $mathcal N = 4$ super-Yang-Mills theory.



rate research

Read More

Recently, Bern et al observed that a certain class of next-to-planar Feynman integrals possess a bonus symmetry that is closely related to dual conformal symmetry. It corresponds to a projection of the latter along a certain lightlike direction. Previous studies were performed at the level of the loop integrand, and a Ward identity for the integral was formulated. We investigate the implications of the symmetry at the level of the integrated quantities. In particular, we focus on the phenomenologically important case of five-particle scattering. The symmetry simplifies the four-variable problem to a three-variable one. In the context of the recently proposed space of pentagon functions, the symmetry is much stronger. We find that it drastically reduces the allowed function space, leading to a well-known space of three-variable functions. Furthermore, we show how to use the symmetry in the presence of infrared divergences, where one obtains an anomalous Ward identity. We verify that the Ward identity is satisfied by the leading and subleading poles of several nontrivial five-particle integrals. Finally, we present examples of integrals that possess both ordinary and dual conformal symmetry.
In this manuscript, which is to appear in the proceedings of the conference MathemAmplitude 2019 in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integrals. The module intersection method, based on computational algebraic geometry, is a highly efficient way of getting IBP relations without double propagator or with a bound on the highest propagator degree. In this manner, trimmed IBP systems which are much shorter than the traditional ones can be obtained. We apply the modern, Petri net based, workflow management system GPI-Space in combination with the computer algebra system Singular to solve the trimmed IBP system via interpolation and efficient parallelization. We show, in particular, how to use the new plugin feature of GPI-Space to manage a global state of the computation and to efficiently handle mutable data. Moreover, a Mathematica interface to generate IBPs with restricted propagator degree, which is based on module intersection, is presented in this review.
Celestial and momentum space amplitudes for massless particles are related to each other by a change of basis provided by the Mellin transform. Therefore properties of celestial amplitudes have counterparts in momentum space amplitudes and vice versa. In this paper, we study the celestial avatar of dual superconformal symmetry of $mathcal{N}=4$ Yang-Mills theory. We also analyze various differential equations known to be satisfied by celestial $n$-point tree-level MHV amplitudes and identify their momentum space origins.
We introduce an algebro-geometrically motived integration-by-parts (IBP) reduction method for multi-loop and multi-scale Feynman integrals, using a framework for massively parallel computations in computer algebra. This framework combines the computer algebra system Singular with the workflow management system GPI-Space, which is being developed at the Fraunhofer Institute for Industrial Mathematics (ITWM). In our approach, the IBP relations are first trimmed by modern algebraic geometry tools and then solved by sparse linear algebra and our new interpolation methods. These steps are efficiently automatized and automatically parallelized by modeling the algorithm in GPI-Space using the language of Petri-nets. We demonstrate the potential of our method at the nontrivial example of reducing two-loop five-point nonplanar double-pentagon integrals. We also use GPI-Space to convert the basis of IBP reductions, and discuss the possible simplification of IBP coefficients in a uniformly transcendental basis.
We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of $73$ master integrals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا