Do you want to publish a course? Click here

A new approach to the modeling of financial volumes

56   0   0.0 ( 0 )
 Added by Filippo Petroni
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

In this paper we study the high frequency dynamic of financial volumes of traded stocks by using a semi-Markov approach. More precisely we assume that the intraday logarithmic change of volume is described by a weighted-indexed semi-Markov chain model. Based on this assumptions we show that this model is able to reproduce several empirical facts about volume evolution like time series dependence, intra-daily periodicity and volume asymmetry. Results have been obtained from a real data application to high frequency data from the Italian stock market from first of January 2007 until end of December 2010.



rate research

Read More

Fundamental variables in financial market are not only price and return but a very important role is also played by trading volumes. Here we propose a new multivariate model that takes into account price returns, logarithmic variation of trading volumes and also waiting times, the latter to be intended as the time interval between changes in trades, price, and volume of stocks. Our approach is based on a generalization of semi-Markov chains where an endogenous index process is introduced. We also take into account the dependence structure between the above mentioned variables by means of copulae. The proposed model is motivated by empirical evidences which are known in financial literature and that are also confirmed in this work by analysing real data from Italian stock market in the period August 2015 - August 2017. By using Monte Carlo simulations, we show that the model reproduces all these empirical evidences.
The principal aim of this work is the evidence on empirical way that catastrophic bifurcation breakdowns or transitions, proceeded by flickering phenomenon, are present on notoriously significant and unpredictable financial markets. Overall, in this work we developed various metrics associated with catastrophic bifurcation transitions, in particular, the catastrophic slowing down (analogous to the critical slowing down). All these things were considered on a well-defined example of financial markets of small and middle to large capitalization. The catastrophic bifurcation transition seems to be connected with the question of whether the early-warning signals are present in financial markets. This question continues to fascinate both the research community and the general public. Interestingly, such early-warning signals have recently been identified and explained to be a consequence of a catastrophic bifurcation transition phenomenon observed in multiple physical systems, e.g. in ecosystems, climate dynamics and in medicine (epileptic seizure and asthma attack). In the present work we provide an analogical, positive identification of such phenomenon by examining its several different indicators in the context of a well-defined daily bubble; this bubble was induced by the recent worldwide financial crisis on typical financial markets of small and middle to large capitalization.
We study tick-by-tick financial returns belonging to the FTSE MIB index of the Italian Stock Exchange (Borsa Italiana). We can confirm previously detected non-stationarities. However, scaling properties reported in the previous literature for other high-frequency financial data are only approximately valid. As a consequence of the empirical analyses, we propose a simple method for describing non-stationary returns, based on a non-homogeneous normal compound Poisson process. We test this model against the empirical findings and it turns out that the model can approximately reproduce several stylized facts of high-frequency financial time series. Moreover, using Monte Carlo simulations, we analyze order selection for this model class using three information criteria: Akaikes information criterion (AIC), the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion (HQ). For comparison, we also perform a similar Monte Carlo experiment for the ACD (autoregressive conditional duration) model. Our results show that the information criteria work best for small parameter numbers for the compound Poisson type models, whereas for the ACD model the model selection procedure does not work well in certain cases.
We propose a novel approach that allows to calculate Hilbert transform based complex correlation for unevenly spaced data. This method is especially suitable for high frequency trading data, which are of a particular interest in finance. Its most important feature is the ability to take into account lead-lag relations on different scales, without knowing them in advance. We also present results obtained with this approach while working on Tokyo Stock Exchange intraday quotations. We show that individual sectors and subsectors tend to form important market components which may follow each other with small but significant delays. These components may be recognized by analysing eigenvectors of complex correlation matrix for Nikkei 225 stocks. Interestingly, sectorial components are also found in eigenvectors corresponding to the bulk eigenvalues, traditionally treated as noise.
A perspective is taken on the intangible complexity of economic and social systems by investigating the underlying dynamical processes that produce, store and transmit information in financial time series in terms of the textit{moving average cluster entropy}. An extensive analysis has evidenced market and horizon dependence of the textit{moving average cluster entropy} in real world financial assets. The origin of the behavior is scrutinized by applying the textit{moving average cluster entropy} approach to long-range correlated stochastic processes as the Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Fractional Brownian motion (FBM). To that end, an extensive set of series is generated with a broad range of values of the Hurst exponent $H$ and of the autoregressive, differencing and moving average parameters $p,d,q$. A systematic relation between textit{moving average cluster entropy}, textit{Market Dynamic Index} and long-range correlation parameters $H$, $d$ is observed. This study shows that the characteristic behaviour exhibited by the horizon dependence of the cluster entropy is related to long-range positive correlation in financial markets. Specifically, long range positively correlated ARFIMA processes with differencing parameter $ dsimeq 0.05$, $dsimeq 0.15$ and $ dsimeq 0.25$ are consistent with textit{moving average cluster entropy} results obtained in time series of DJIA, S&P500 and NASDAQ.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا