Do you want to publish a course? Click here

Ordinary p-adic automorphic forms

188   0   0.0 ( 0 )
 Added by Binyong Sun
 Publication date 2017
  fields
and research's language is English
 Authors Binyong Sun




Ask ChatGPT about the research

Generalizing the completed cohomology groups introduced by Matthew Emerton, we define certain spaces of ordinary $p$-adic automorphic forms along a parabolic subgroup and show that they interpret all classical ordinary automorphic forms.



rate research

Read More

363 - D.R. Heath-Brown 2009
A variant of Brauers induction method is developed. It is shown that quartic p-adic forms with at least 9127 variables have non-trivial zeros, for every p. For odd p considerably fewer variables are needed. There are also subsidiary new results concerning quintic forms, and systems of forms.
161 - D.R. Heath-Brown 2009
It is shown that a system of $r$ quadratic forms over a ${mathfrak p}$-adic field has a non-trivial common zero as soon as the number of variables exceeds $4r$, providing that the residue class field has cardinality at least $(2r)^r$.
227 - Yichao Tian , Liang Xiao 2013
Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Coleman. The key ingredient of the proof is giving an explicit description of the Goren-Oort stratification of the special fiber of the Hilbert modular variety. A byproduct of the proof is to show that, at least when $p$ is inert, of the rigid cohomology of the ordinary locus has the same image as the classical forms in the Grothendieck group of Hecke modules.
In this paper a theory of Hecke operators for higher order modular forms is established. The definition of cusp forms and attached L-functions is extended beyond the realm of parabolic invariants. The role of representation theoretic methods is clarified and, motivated by higher order forms, new convolution products of L-functions are introduced.
We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least 2 this correspondence is given by the Eichler integral. Knopp generalized this to real weights. We show that for weights that are not an integer at least 2 the generalized Eichler integral gives an injection into the first cohomology group with values in a module of holomorphic functions, and characterize the image. We impose no condition on the growth of the automorphic forms at the cusps. For real weights that are not an integer at least 2 we similarly characterize the space of cusp forms and the space of entire automorphic forms. We give a relation between the cohomology classes attached to holomorphic automorphic forms of real weight and the existence of harmonic lifts. A tool in establishing these results is the relation to cohomology groups with values in modules of analytic boundary germs, which are represented by harmonic functions on subsets of the upper half-plane. Even for positive integral weights cohomology with these coefficients can distinguish all holomorphic automorphic forms, unlike the classical Eichler theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا