Do you want to publish a course? Click here

A Study of Piecewise Linear-Quadratic Programs

98   0   0.0 ( 0 )
 Added by Mingyi Hong
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by a growing list of nontraditional statistical estimation problems of the piecewise kind, this paper provides a survey of known results supplemented with new results for the class of piecewise linear-quadratic programs. These are linearly constrained optimization problems with piecewise linear-quadratic (PLQ) objective functions. Starting from a study of the representation of such a function in terms of a family of elementary functions consisting of squared affine functions, squared plus-composite-affine functions, and affine functions themselves, we summarize some local properties of a PLQ function in terms of their first and second-order directional derivatives. We extend some well-known necessary and sufficient second-order conditions for local optimality of a quadratic program to a PLQ program and provide a dozen such equivalent conditions for strong, strict, and isolated local optimality, showing in particular that a PLQ program has the same characterizations for local minimality as a standard quadratic program. As a consequence of one such condition, we show that the number of strong, strict, or isolated local minima of a PLQ program is finite; this result supplements a recent result about the finite number of directional stationary objective values. Interestingly, these finiteness results can be uncovered by invoking a very powerful property of subanalytic functions; our proof is fairly elementary, however. We discuss applications of PLQ programs in some modern statistical estimation problems. These problems lead to a special class of unconstrained composite programs involving the non-differentiable $ell_1$-function, for which we show that the task of verifying the second-order stationary condition can be converted to the problem of checking the copositivity of certain Schur complement on the nonnegative orthant.



rate research

Read More

73 - Deepak Kumar , Yves Lucet 2021
Computing the closed convex envelope or biconjugate is the core operation that bridges the domain of nonconvex with convex analysis. We focus here on computing the conjugate of a bivariate piecewise quadratic function defined over a polytope. First, we compute the convex envelope of each piece, which is characterized by a polyhedral subdivision such that over each member of the subdivision, it has a rational form (square of a linear function over a linear function). Then we compute the conjugate of all such rational functions. It is observed that the conjugate has a parabolic subdivision such that over each member of its subdivision, it has a fractional form (linear function over square root of a linear function). This computation of the conjugate is performed with a worst-case linear time complexity algorithm. Our results are an important step toward computing the conjugate of a piecewise quadratic function, and further in obtaining explicit formulas for the convex envelope of piecewise rational functions.
Many separable nonlinear optimization problems can be approximated by their nonlinear objective functions with piecewise linear functions. A natural question arising from applying this approach is how to break the interval of interest into subintervals (pieces) to achieve a good approximation. We present formulations to optimize the location of the knots. We apply a sequential quadratic programming method and a spectral projected gradient method to solve the problem. We report numerical experiments to show the effectiveness of the proposed approaches.
For each integer $n$ we present an explicit formulation of a compact linear program, with $O(n^3)$ variables and constraints, which determines the satisfiability of any 2SAT formula with $n$ boolean variables by a single linear optimization. This contrasts with the fact that the natural polytope for this problem, formed from the convex hull of all satisfiable formulas and their satisfying assignments, has superpolynomial extension complexity. Our formulation is based on multicommodity flows. We also discuss connections of these results to the stable matching problem.
We settle the computational complexity of fundamental questions related to multicriteria integer linear programs, when the dimensions of the strategy space and of the outcome space are considered fixed constants. In particular we construct: 1. polynomial-time algorithms to exactly determine the number of Pareto optima and Pareto strategies; 2. a polynomial-space polynomial-delay prescribed-order enumeration algorithm for arbitrary projections of the Pareto set; 3. an algorithm to minimize the distance of a Pareto optimum from a prescribed comparison point with respect to arbitrary polyhedral norms; 4. a fully polynomial-time approximation scheme for the problem of minimizing the distance of a Pareto optimum from a prescribed comparison point with respect to the Euclidean norm.
89 - Youwei Liang 2020
An important method to optimize a function on standard simplex is the active set algorithm, which requires the gradient of the function to be projected onto a hyperplane, with sign constraints on the variables that lie in the boundary of the simplex. We propose a new algorithm to efficiently project the gradient for this purpose. Furthermore, we apply the proposed gradient projection method to quadratic programs (QP) with standard simplex constraints, where gradient projection is used to explore the feasible region and, when we believe the optimal active set is identified, we switch to constrained conjugate gradient to accelerate convergence. Specifically, two different directions of gradient projection are used to explore the simplex, namely, the projected gradient and the reduced gradient. We choose one of the two directions according to the angle between the directions. Moreover, we propose two conditions for guessing the optimal active set heuristically. The first condition is that the working set remains unchanged for many iterations, and the second condition is that the angle between the projected gradient and the reduced gradient is small enough. Based on these strategies, a new active set algorithm for solving quadratic programs on standard simplex is proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا