Do you want to publish a course? Click here

Quantum knots in Bose-Einstein condensates created by counterdiabatic control

115   0   0.0 ( 0 )
 Added by Tuomas Ollikainen
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically study the creation of knot structures in the polar phase of spin-1 BECs using the counterdiabatic protocol in an unusual fashion. We provide an analytic solution to the evolution of the external magnetic field that is used to imprint the knots. As confirmed by our simulations using the full three-dimensional spin-1 Gross-Pitaevskii equation, our method allows for the precise control of the Hopf charge as well as the creation time of the knots. The knots with Hopf charge exceeding unity display multiple nested Hopf links.



rate research

Read More

We examine on the static and dynamical properties of quantum knots in a Bose-Einstein condensate. In particular, we consider the Gross-Pitaevskii model and revise a technique to construct ab initio the condensate wave-function of a generic torus knot. After analysing its excitation energy, we study its dynamics relating the topological parameter to its translational velocity and characteristic size. We also investigate the breaking mechanisms of non shape-preserving torus knots confirming an evidence of universal decaying behaviour previously observed.
We show that an elliptical obstacle moving through a Bose-Einstein condensate generates wakes of quantum vortices which resemble those of classical viscous flow past a cylinder or sphere. The role of ellipticity is to facilitate the interaction of the vortices nucleated by the obstacle. Initial steady symmetric wakes lose their symmetry and form clusters of like-signed vortices, in analogy to the classical Benard-von Karman vortex street. Our findings, demonstrated numerically in both two and three dimensions, confirm the intuition that a sufficiently large number of quanta of circulation reproduce classical physics.
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongate quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.
Long-lived, spatially localized, and temporally oscillating nonlinear excitations are predicted by numerical simulation of coupled Gross-Pitaevskii equations. These oscillons closely resemble the time-periodic breather solutions of the sine-Gordon equation but decay slowly by radiating Bogoliubov phonons. Their time-dependent profile is closely matched with solutions of the sine-Gordon equation, which emerges as an effective field theory for the relative phase of two linearly coupled Bose fields in the weak-coupling limit. For strong coupling the long-lived oscillons persist and involve both relative and total phase fields. The oscillons decay via Bogoliubov phonon radiation that is increasingly suppressed for decreasing oscillon amplitude. Possibilities for creating oscillons are addressed in atomic gas experiments by collision of oppositely charged Bose-Josephson vortices and direct phase imprinting.
Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling, which occurs in bursts. While the escape time scales exponentially with small interactions, the maximization time of the von Neumann entanglement entropy between the remaining quasibound and escaped atoms scales quadratically. Stronger interactions require higher order corrections. Entanglement entropy is maximized when about half the atoms have escaped.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا