No Arabic abstract
In this paper, we address the problem of detecting expressions of moral values in tweets using content analysis. This is a particularly challenging problem because moral values are often only implicitly signaled in language, and tweets contain little contextual information due to length constraints. To address these obstacles, we present a novel approach to automatically acquire background knowledge from an external knowledge base to enrich input texts and thus improve moral value prediction. By combining basic text features with background knowledge, our overall context-aware framework achieves performance comparable to a single human annotator. To the best of our knowledge, this is the first attempt to incorporate background knowledge for the prediction of implicit psychological variables in the area of computational social science.
Moral rhetoric plays a fundamental role in how we perceive and interpret the information we receive, greatly influencing our decision-making process. Especially when it comes to controversial social and political issues, our opinions and attitudes are hardly ever based on evidence alone. The Moral Foundations Dictionary (MFD) was developed to operationalize moral values in the text. In this study, we present MoralStrength, a lexicon of approximately 1,000 lemmas, obtained as an extension of the Moral Foundations Dictionary, based on WordNet synsets. Moreover, for each lemma it provides with a crowdsourced numeric assessment of Moral Valence, indicating the strength with which a lemma is expressing the specific value. We evaluated the predictive potentials of this moral lexicon, defining three utilization approaches of increased complexity, ranging from lemmas statistical properties to a deep learning approach of word embeddings based on semantic similarity. Logistic regression models trained on the features extracted from MoralStrength, significantly outperformed the current state-of-the-art, reaching an F1-score of 87.6% over the previous 62.4% (p-value<0.01), and an average F1-Score of 86.25% over six different datasets. Such findings pave the way for further research, allowing for an in-depth understanding of moral narratives in text for a wide range of social issues.
The field of machine ethics is concerned with the question of how to embed ethical behaviors, or a means to determine ethical behaviors, into artificial intelligence (AI) systems. The goal is to produce artificial moral agents (AMAs) that are either implicitly ethical (designed to avoid unethical consequences) or explicitly ethical (designed to behave ethically). Van Wynsberghe and Robbins (2018) paper Critiquing the Reasons for Making Artificial Moral Agents critically addresses the reasons offered by machine ethicists for pursuing AMA research; this paper, co-authored by machine ethicists and commentators, aims to contribute to the machine ethics conversation by responding to that critique. The reasons for developing AMAs discussed in van Wynsberghe and Robbins (2018) are: it is inevitable that they will be developed; the prevention of harm; the necessity for public trust; the prevention of immoral use; such machines are better moral reasoners than humans, and building these machines would lead to a better understanding of human morality. In this paper, each co-author addresses those reasons in turn. In so doing, this paper demonstrates that the reasons critiqued are not shared by all co-authors; each machine ethicist has their own reasons for researching AMAs. But while we express a diverse range of views on each of the six reasons in van Wynsberghe and Robbins critique, we nevertheless share the opinion that the scientific study of AMAs has considerable value.
A large number of individuals are suffering from suicidal ideation in the world. There are a number of causes behind why an individual might suffer from suicidal ideation. As the most popular platform for self-expression, emotion release, and personal interaction, individuals may exhibit a number of symptoms of suicidal ideation on social media. Nevertheless, challenges from both data and knowledge aspects remain as obstacles, constraining the social media-based detection performance. Data implicitness and sparsity make it difficult to discover the inner true intentions of individuals based on their posts. Inspired by psychological studies, we build and unify a high-level suicide-oriented knowledge graph with deep neural networks for suicidal ideation detection on social media. We further design a two-layered attention mechanism to explicitly reason and establish key risk factors to individuals suicidal ideation. The performance study on microblog and Reddit shows that: 1) with the constructed personal knowledge graph, the social media-based suicidal ideation detection can achieve over 93% accuracy; and 2) among the six categories of personal factors, post, personality, and experience are the top-3 key indicators. Under these categories, posted text, stress level, stress duration, posted image, and ruminant thinking contribute to ones suicidal ideation detection.
Span extraction is an essential problem in machine reading comprehension. Most of the existing algorithms predict the start and end positions of an answer span in the given corresponding context by generating two probability vectors. In this paper, we propose a novel approach that extends the probability vector to a probability matrix. Such a matrix can cover more start-end position pairs. Precisely, to each possible start index, the method always generates an end probability vector. Besides, we propose a sampling-based training strategy to address the computational cost and memory issue in the matrix training phase. We evaluate our method on SQuAD 1.1 and three other question answering benchmarks. Leveraging the most competitive models BERT and BiDAF as the backbone, our proposed approach can get consistent improvements in all datasets, demonstrating the effectiveness of the proposed method.
Developing moral awareness in intelligent systems has shifted from a topic of philosophical inquiry to a critical and practical issue in artificial intelligence over the past decades. However, automated inference of everyday moral situations remains an under-explored problem. We present a text-based approach that predicts peoples intuitive judgment of moral vignettes. Our methodology builds on recent work in contextualized language models and textual inference of moral sentiment. We show that a contextualized representation offers a substantial advantage over alternative representations based on word embeddings and emotion sentiment in inferring human moral judgment, evaluated and reflected in three independent datasets from moral psychology. We discuss the promise and limitations of our approach toward automated textual moral reasoning.