Do you want to publish a course? Click here

Instrumentation and its Interaction with the Secondary Beam for the Fermilab Muon Campus

61   0   0.0 ( 0 )
 Added by Stratakis, Diktys
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Fermilab Muon Campus will host the Muon g-2 experiment - a world class experiment dedicated to the search for signals of new physics. Strict demands are placed on beam diagnostics in order to ensure delivery of high quality beams to the storage ring with minimal losses. In this study, we briefly describe the available secondary beam diagnostics for the Fermilab Muon Campus. Then, with the aid of numerical simulations we detail their interaction with the secondary beam. Finally, we compare our results against theoretical findings.



rate research

Read More

Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstream beam line optics, as well as transport of muon polarization. We finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.
Starting this summer, Fermilab will host a key experiment dedicated to the search for signals of new physics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contamination, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being sent to the experiment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.
The achievable beam current and beam quality of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the walls of the vacuum chamber can contribute to the growth of the electron cloud. An apparatus for in-situ measurements of the secondary electron yield (SEY) of samples in the vacuum chamber of the Cornell Electron Storage Ring (CESR) has been developed in connection with EC studies for the CESR Test Accelerator program (CesrTA). The CesrTA in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The SEY chambers can be isolated from the CESR beam pipe, allowing us to exchange samples without venting the CESR vacuum chamber. Measurements so far have been on metal surfaces and EC-mitigation coatings. The goal of the SEY measurement program is to improve predictive models for EC build-up and EC-induced beam effects. This report describes the CesrTA in-situ SEY apparatus, the measurement tool and techniques, and iterative improvements therein.
At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the cooling water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% for systems with deionizers, although the deionizers function to remove 7Be from the cooling water.
In 1974, Nelson, Kase, and Svenson published an experimental investigation on muon shielding using the SLAC high energy LINAC. They measured muon fluence and absorbed dose induced by a 18 GeV electron beam hitting a copper/water beam dump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical mode ls available at the time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results will then be compared between the codes, and with the SLAC data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا