Shiba Bound States across the mobility edge in doped InAs nanowires


Abstract in English

We present a study of Andreev Quantum Dots (QDots) fabricated with small-diameter (30 nm) Si-doped InAs nanowires where the Fermi level can be tuned across a mobility edge separating localized states from delocalized states. The transition to the insulating phase is identified by a drop in the amplitude and width of the excited levels and is found to have remarkable consequences on the spectrum of superconducting SubGap Resonances (SGRs). While at deeply localized levels, only quasiparticles co-tunneling is observed, for slightly delocalized levels, Shiba bound states form and a parity changing quantum phase transition is identified by a crossing of the bound states at zero energy. Finally, in the metallic regime, single Andreev resonances are observed.

Download