We study the photoassisted shot noise generated by a periodic voltage in the fractional quantum Hall regime. Fluctuations of the current are due to the presence of a quantum point contact operating in the weak backscattering regime. We show how to reconstruct the photoassisted absorption and emission probabilities by varying independently the dc and ac contributions to the voltage drive. This is made possible by the peculiar power-law behavior of the tunneling rates in the chiral Luttinger liquid theory, which allow to approximate the typical infinite sums of the photoassisted transport formalism in a simple and particularly convenient way.