Extended Wiener-Khinchin theorem for quantum spectral analysis


Abstract in English

The classical Wiener-Khinchin theorem (WKT), which can extract spectral information by classical interferometers through Fourier transform, is a fundamental theorem used in many disciplines. However, there is still need for a quantum version of WKT, which could connect correlated biphoton spectral information by quantum interferometers. Here, we extend the classical WKT to its quantum counterpart, i.e., extended WKT (e-WKT), which is based on two-photon quantum interferometry. According to the e-WKT, the difference-frequency distribution of the biphoton wavefunctions can be extracted by applying a Fourier transform on the time-domain Hong-Ou-Mandel interference (HOMI) patterns, while the sum-frequency distribution can be extracted by applying a Fourier transform on the time-domain NOON state interference (NOONI) patterns. We also experimentally verified the WKT and e-WKT in a Mach-Zehnder interference (MZI), a HOMI and a NOONI. This theorem can be directly applied to quantum spectroscopy, where the spectral correlation information of biphotons can be obtained from time-domain quantum interferences by Fourier transform. This may open a new pathway for the study of light-matter interaction at the single photon level.

Download