Do you want to publish a course? Click here

The Cosmic-Ray Neutron Rover - Mobile Surveys of Field Soil Moisture and the Influence of Roads

133   0   0.0 ( 0 )
 Added by Martin Schr\\\"on
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters have been a challenge for many decades. The mobile application of Cosmic-Ray Neutron Sensing (CRNS) is a promising approach to measure field soil moisture non-invasively by surveying large regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of local structures and roads. We employed neutron transport simulations and dedicated experiments to quantify the influence of different road types on the CRNS measurement. We found that the presence of roads introduces a bias in the CRNS estimation of field soil moisture compared to non-road scenarios. However, this effect becomes insignificant at distances beyond a few meters from the road. Measurements from the road could overestimate the field value by up to 40 % depending on road material, width, and the surrounding field water content. The bias could be successfully removed with an analytical correction function that accounts for these parameters. Additionally, an empirical approach is proposed that can be used on-the-fly without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement between road-effect corrected measurements and field soil moisture observations. However, if knowledge about the road characteristics is missing, any measurements on the road could substantially reduce the accuracy of this method. Our results constitute a practical advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture.



rate research

Read More

Proximal gamma-ray spectroscopy supported by adequate calibration and correction for growing biomass is an effective field scale technique for a continuous monitoring of top soil water content dynamics to be potentially employed as a decision support tool for automatic irrigation scheduling. This study demonstrates that this approach has the potential to be one of the best space-time trade-off methods, representing a joining link between punctual and satellite fields of view. The inverse proportionality between soil moisture and gamma signal is theoretically derived taking into account a non-constant correction due to the presence of growing vegetation beneath the detector position. The gamma signal attenuation due to biomass is modelled with a Monte Carlo-based approach in terms of an equivalent water layer which thickness varies in time as the crop evolves during its life-cycle. The reliability and effectiveness of this approach is proved through a 7 months continuous acquisition of terrestrial gamma radiation in a 0.4 ha tomato (Solanum lycopersicum) test field. We demonstrate that a permanent gamma station installed at an agricultural field can reliably probe the water content of the top soil only if systematic effects due to the biomass shielding are properly accounted for. Biomass corrected experimental values of soil water content inferred from radiometric measurements are compared with gravimetric data acquired under different soil moisture levels, resulting in an average percentage relative discrepancy of about 3% in bare soil condition and of 4% during the vegetated period. The temporal evolution of corrected soil water content values exhibits a dynamic range coherent with the soil hydraulic properties in terms of wilting point, field capacity and saturation.
Proximal soil sensors are taking hold in the understanding of soil hydrogeological processes involved in precision agriculture. In this context, permanently installed gamma ray spectroscopy stations represent one of the best space-time trade off methods at field scale. This study proved the feasibility and reliability of soil water content monitoring through a seven-month continuous acquisition of terrestrial gamma radiation in a tomato test field. By employing a 1 L sodium iodide detector placed at a height of 2.25 m, we investigated the gamma signal coming from an area having a ~25 m radius and from a depth of approximately 30 cm. Experimental values, inferred after a calibration measurement and corrected for the presence of biomass, were corroborated with gravimetric data acquired under different soil moisture conditions, giving an average absolute discrepancy of about 2%. A quantitative comparison was carried out with data simulated by AquaCrop, CRITeRIA, and IRRINET soil-crop system models. The different goodness of fit obtained in bare soil condition and during the vegetated period highlighted that CRITeRIA showed the best agreement with the experimental data over the entire data-taking period while, in presence of the tomato crop, IRRINET provided the best results.
Soil has been recognized as an indirect driver of global warming by regulating atmospheric greenhouse gases. However, in view of the higher heat capacity and CO2 concentration in soil than those in atmosphere, the direct contributions of soil to greenhouse effect may be non-ignorable. Through field manipulation of CO2 concentration both in soil and atmosphere, we demonstrated that the soil-retained heat and its slow transmission process within soil may cause slower heat leaking from the earth. Furthermore, soil air temperature was non-linearly affected by soil CO2 concentration with the highest value under 7500 ppm CO2. This study indicates that the soil and soil CO2, together with atmospheric CO2, play indispensable roles in fueling the greenhouse effect. We proposed that anthropogenic changes in soils should be focused in understanding drivers of the globe warming.
A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a single stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in long-term soil salinization trends, with significant consequences e.g. for climate change impacts on rain-fed agriculture.
Proximal gamma-ray spectroscopy recently emerged as a promising technique for non-stop monitoring of soil water content with possible applications in the field of precision farming. The potentialities of the method are investigated by means of Monte Carlo simulations applied to the reconstruction of gamma-ray spectra collected by a NaI scintillation detector permanently installed at an agricultural experimental site. A two steps simulation strategy based on a geometrical translational invariance is developed. The strengths of this approach are the reduction of computational time with respect to a direct source-detector simulation, the reconstruction of $^{40}K$, $^{232}Th$ and $^{238}U$ fundamental spectra, the customization in relation to different experimental scenarios and the investigation of effects due to individual variables for sensitivity studies. The reliability of the simulation is effectively validated against an experimental measurement with known soil water content and radionuclides abundances. The relation between soil water content and gamma signal is theoretically derived and applied to a Monte Carlo synthetic calibration performed with the specific soil composition of the experimental site. Ready to use general formulae and simulated coefficients for the estimation of soil water content are also provided adopting standard soil compositions. Linear regressions between input and output soil water contents, inferred from simulated $^{40}K$ and $^{208}Tl$ gamma signals, provide excellent results demonstrating the capability of the proposed method in estimating soil water content with an average uncertainty <1%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا